Constant-depth circuits for Boolean functions and quantum memory devices using multi-qubit gates

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-11-20 DOI:10.22331/q-2024-11-20-1530
Jonathan Allcock, Jinge Bao, Joao F. Doriguello, Alessandro Luongo, Miklos Santha
{"title":"Constant-depth circuits for Boolean functions and quantum memory devices using multi-qubit gates","authors":"Jonathan Allcock, Jinge Bao, Joao F. Doriguello, Alessandro Luongo, Miklos Santha","doi":"10.22331/q-2024-11-20-1530","DOIUrl":null,"url":null,"abstract":"We explore the power of the unbounded Fan-Out gate and the Global Tunable gates generated by Ising-type Hamiltonians in constructing constant-depth quantum circuits, with particular attention to quantum memory devices. We propose two types of constant-depth constructions for implementing Uniformly Controlled Gates. These gates include the Fan-In gates defined by $|x\\rangle|b\\rangle\\mapsto |x\\rangle|b\\oplus f(x)\\rangle$ for $x\\in\\{0,1\\}^n$ and $b\\in\\{0,1\\}$, where $f$ is a Boolean function. The first of our constructions is based on computing the one-hot encoding of the control register $|x\\rangle$, while the second is based on Boolean analysis and exploits different representations of $f$ such as its Fourier expansion. Via these constructions, we obtain constant-depth circuits for the quantum counterparts of read-only and read-write memory devices – Quantum Random Access Memory (QRAM) and Quantum Random Access Gate (QRAG) – of memory size $n$. The implementation based on one-hot encoding requires either $O(n\\log^{(d)}{n}\\log^{(d+1)}{n})$ ancillae and $O(n\\log^{(d)}{n})$ Fan-Out gates or $O(n\\log^{(d)}{n})$ ancillae and $16d-10$ Global Tunable gates, where $d$ is any positive integer and $\\log^{(d)}{n} = \\log\\cdots \\log{n}$ is the $d$-times iterated logarithm. On the other hand, the implementation based on Boolean analysis requires $8d-6$ Global Tunable gates at the expense of $O(n^{1/(1-2^{-d})})$ ancillae.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"35 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-11-20-1530","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the power of the unbounded Fan-Out gate and the Global Tunable gates generated by Ising-type Hamiltonians in constructing constant-depth quantum circuits, with particular attention to quantum memory devices. We propose two types of constant-depth constructions for implementing Uniformly Controlled Gates. These gates include the Fan-In gates defined by $|x\rangle|b\rangle\mapsto |x\rangle|b\oplus f(x)\rangle$ for $x\in\{0,1\}^n$ and $b\in\{0,1\}$, where $f$ is a Boolean function. The first of our constructions is based on computing the one-hot encoding of the control register $|x\rangle$, while the second is based on Boolean analysis and exploits different representations of $f$ such as its Fourier expansion. Via these constructions, we obtain constant-depth circuits for the quantum counterparts of read-only and read-write memory devices – Quantum Random Access Memory (QRAM) and Quantum Random Access Gate (QRAG) – of memory size $n$. The implementation based on one-hot encoding requires either $O(n\log^{(d)}{n}\log^{(d+1)}{n})$ ancillae and $O(n\log^{(d)}{n})$ Fan-Out gates or $O(n\log^{(d)}{n})$ ancillae and $16d-10$ Global Tunable gates, where $d$ is any positive integer and $\log^{(d)}{n} = \log\cdots \log{n}$ is the $d$-times iterated logarithm. On the other hand, the implementation based on Boolean analysis requires $8d-6$ Global Tunable gates at the expense of $O(n^{1/(1-2^{-d})})$ ancillae.
使用多量子比特门的布尔函数恒深电路和量子存储器件
我们探索了无界扇出门和由 Ising 型哈密顿产生的全局可调门在构建恒定深度量子电路中的威力,尤其关注量子存储器件。我们提出了两类实现均匀受控门的恒定深度结构。这些门包括由$|x\rangle|b\rangle\mapsto |x\rangle|b\oplus f(x)\rangle$定义的扇进门,其中$x\in\{0,1\}^n$和$b\in\{0,1\}$为布尔函数。我们的第一个构造是基于计算控制寄存器 $|x\rangle$ 的单次编码,而第二个构造则是基于布尔分析,并利用了 $f$ 的不同表示形式,如其傅里叶展开。通过这些构造,我们获得了内存大小为 $n$ 的只读和读写存储器设备--量子随机存取存储器(QRAM)和量子随机存取门(QRAG)--的量子对应恒定深度电路。基于单次热编码的实现需要 $O(n\log^{(d)}{n}\log^{(d+1)}{n})$ 放大门和 $O(n\log^{(d)}{n})$ 扇出门,或者 $O(n\log^{(d)}{n})$ 放大门和 $16d-10$ 全局可调门、其中,$d$ 是任意正整数,$\log^{(d)}{n} = \log\cdots \log{n}$ 是 $d$ 次迭代对数。另一方面,基于布尔分析的实现方法需要 8d-6$ 全局可调门,代价是需要 $O(n^{1/(1-2^{-d})})$ 分支。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信