{"title":"A novel arctic fox survival strategy inspired optimization algorithm","authors":"E. Subha, V. Jothi Prakash, S. Arul Antran Vijay","doi":"10.1007/s10878-024-01233-8","DOIUrl":null,"url":null,"abstract":"<p>In the field of optimization algorithms, nature-inspired techniques have garnered attention for their adaptability and problem-solving prowess. This research introduces the Arctic Fox Algorithm (AFA), an innovative optimization technique inspired by the adaptive survival strategies of the Arctic fox, designed to excel in dynamic and complex optimization landscapes. Incorporating gradient flow dynamics, stochastic differential equations, and probability distributions, AFA is equipped to adjust its search strategies dynamically, enhancing both exploration and exploitation capabilities. Through rigorous evaluation on a set of 25 benchmark functions, AFA consistently outperformed established algorithms particularly in scenarios involving high-dimensional and multi-modal problems, demonstrating faster convergence and improved solution quality. Application of AFA to real-world problems, including wind farm layout optimization and financial portfolio optimization, highlighted its ability to increase energy outputs by up to 15% and improve portfolio Sharpe ratios by 20% compared to conventional methods. These results showcase AFA’s potential as a robust tool for complex optimization tasks, paving the way for future research focused on refining its adaptive mechanisms and exploring broader applications.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01233-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of optimization algorithms, nature-inspired techniques have garnered attention for their adaptability and problem-solving prowess. This research introduces the Arctic Fox Algorithm (AFA), an innovative optimization technique inspired by the adaptive survival strategies of the Arctic fox, designed to excel in dynamic and complex optimization landscapes. Incorporating gradient flow dynamics, stochastic differential equations, and probability distributions, AFA is equipped to adjust its search strategies dynamically, enhancing both exploration and exploitation capabilities. Through rigorous evaluation on a set of 25 benchmark functions, AFA consistently outperformed established algorithms particularly in scenarios involving high-dimensional and multi-modal problems, demonstrating faster convergence and improved solution quality. Application of AFA to real-world problems, including wind farm layout optimization and financial portfolio optimization, highlighted its ability to increase energy outputs by up to 15% and improve portfolio Sharpe ratios by 20% compared to conventional methods. These results showcase AFA’s potential as a robust tool for complex optimization tasks, paving the way for future research focused on refining its adaptive mechanisms and exploring broader applications.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.