All you need is rotation: Construction of developable strips

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Takashi Maekawa, Felix Scholz
{"title":"All you need is rotation: Construction of developable strips","authors":"Takashi Maekawa, Felix Scholz","doi":"10.1145/3687947","DOIUrl":null,"url":null,"abstract":"We present a novel approach to generate developable strips along a space curve. The key idea of the new method is to use the rotation angle between the Frenet frame of the input space curve, and its Darboux frame of the curve on the resulting developable strip as a free design parameter, thereby revolving the strip around the tangential axis of the input space curve. This angle is not restricted to be constant but it can be any differentiable function defined on the curve, thereby creating a large design space of developable strips that share a common directrix curve. The range of possibilities for choosing the rotation angle is diverse, encompassing constant angles, linearly varying angles, sinusoidal patterns, and even solutions derived from initial value problems involving ordinary differential equations. This enables the potential of the proposed method to be used for a wide range of practical applications, spanning fields such as architectural design, industrial design, and papercraft modeling. In our computational and physical examples, we demonstrate the flexibility of the method by constructing, among others, toroidal and helical windmill blades for papercraft models, curved foldings, triply orthogonal structures, and developable strips featuring a log-aesthetic directrix curve.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"10 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687947","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel approach to generate developable strips along a space curve. The key idea of the new method is to use the rotation angle between the Frenet frame of the input space curve, and its Darboux frame of the curve on the resulting developable strip as a free design parameter, thereby revolving the strip around the tangential axis of the input space curve. This angle is not restricted to be constant but it can be any differentiable function defined on the curve, thereby creating a large design space of developable strips that share a common directrix curve. The range of possibilities for choosing the rotation angle is diverse, encompassing constant angles, linearly varying angles, sinusoidal patterns, and even solutions derived from initial value problems involving ordinary differential equations. This enables the potential of the proposed method to be used for a wide range of practical applications, spanning fields such as architectural design, industrial design, and papercraft modeling. In our computational and physical examples, we demonstrate the flexibility of the method by constructing, among others, toroidal and helical windmill blades for papercraft models, curved foldings, triply orthogonal structures, and developable strips featuring a log-aesthetic directrix curve.
你需要的只是旋转:建设可开发地带
我们提出了一种沿空间曲线生成可展开条带的新方法。这种新方法的主要思想是利用输入空间曲线的 Frenet 框架和曲线的 Darboux 框架之间的旋转角度作为自由设计参数,从而使条带围绕输入空间曲线的切向轴旋转。这个角度不一定是常数,也可以是定义在曲线上的任何可微分函数,从而创造出一个共享一条共同方向轴曲线的大型可展开带材设计空间。选择旋转角度的可能性多种多样,包括恒定角度、线性变化角度、正弦模式,甚至包括从涉及常微分方程的初值问题中得出的解决方案。这使得所提出的方法具有广泛的实际应用潜力,横跨建筑设计、工业设计和纸艺建模等领域。在我们的计算和物理示例中,我们通过构建用于纸艺模型的环形和螺旋风车叶片、曲线折叠、三重正交结构以及具有对数美学直角坐标曲线的可展开条带等,展示了该方法的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信