{"title":"Medial Skeletal Diagram: A Generalized Medial Axis Approach for Compact 3D Shape Representation","authors":"Minghao Guo, Bohan Wang, Wojciech Matusik","doi":"10.1145/3687964","DOIUrl":null,"url":null,"abstract":"We propose the Medial Skeletal Diagram, a novel skeletal representation that tackles the prevailing issues around skeleton sparsity and reconstruction accuracy in existing skeletal representations. Our approach augments the continuous elements in the medial axis representation to effectively shift the complexity away from the discrete elements. To that end, we introduce generalized enveloping primitives, an enhancement over the standard primitives in the medial axis, which ensure efficient coverage of intricate local features of the input shape and substantially reduce the number of discrete elements required. Moreover, we present a computational framework for constructing a medial skeletal diagram from an arbitrary closed manifold mesh. Our optimization pipeline ensures that the resulting medial skeletal diagram comprehensively covers the input shape with the fewest primitives. Additionally, each optimized primitive undergoes a post-refinement process to guarantee an accurate match with the source mesh in both geometry and tessellation. We validate our approach on a comprehensive benchmark of 100 shapes, demonstrating the sparsity of the discrete elements and superior reconstruction accuracy across a variety of cases. Finally, we exemplify the versatility of our representation in downstream applications such as shape generation, mesh decomposition, shape optimization, mesh alignment, mesh compression, and user-interactive design.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"10 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687964","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We propose the Medial Skeletal Diagram, a novel skeletal representation that tackles the prevailing issues around skeleton sparsity and reconstruction accuracy in existing skeletal representations. Our approach augments the continuous elements in the medial axis representation to effectively shift the complexity away from the discrete elements. To that end, we introduce generalized enveloping primitives, an enhancement over the standard primitives in the medial axis, which ensure efficient coverage of intricate local features of the input shape and substantially reduce the number of discrete elements required. Moreover, we present a computational framework for constructing a medial skeletal diagram from an arbitrary closed manifold mesh. Our optimization pipeline ensures that the resulting medial skeletal diagram comprehensively covers the input shape with the fewest primitives. Additionally, each optimized primitive undergoes a post-refinement process to guarantee an accurate match with the source mesh in both geometry and tessellation. We validate our approach on a comprehensive benchmark of 100 shapes, demonstrating the sparsity of the discrete elements and superior reconstruction accuracy across a variety of cases. Finally, we exemplify the versatility of our representation in downstream applications such as shape generation, mesh decomposition, shape optimization, mesh alignment, mesh compression, and user-interactive design.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.