Jian Wang, Sizhuo Ma, Karl Bayer, Yi Zhang, Peihao Wang, Bing Zhou, Shree Nayar, Gurunandan Krishnan
{"title":"Perspective-Aligned AR Mirror with Under-Display Camera","authors":"Jian Wang, Sizhuo Ma, Karl Bayer, Yi Zhang, Peihao Wang, Bing Zhou, Shree Nayar, Gurunandan Krishnan","doi":"10.1145/3687995","DOIUrl":null,"url":null,"abstract":"Augmented reality (AR) mirrors are novel displays that have great potential for commercial applications such as virtual apparel try-on. Typically the camera is placed beside the display, leading to distorted perspectives during user interaction. In this paper, we present a novel approach to address this problem by placing the camera behind a transparent display, thereby providing users with a perspective-aligned experience. Simply placing the camera behind the display can compromise image quality due to optical effects. We meticulously analyze the image formation process, and present an image restoration algorithm that benefits from physics-based data synthesis and network design. Our method significantly improves image quality and outperforms existing methods especially on the underexplored wire and backscatter artifacts. We then carefully design a full AR mirror system including display and camera selection, real-time processing pipeline, and mechanical design. Our user study demonstrates that the system is exceptionally well-received by users, highlighting its advantages over existing camera configurations not only as an AR mirror, but also for video conferencing. Our work represents a step forward in the development of AR mirrors, with potential applications in retail, cosmetics, fashion, <jats:italic>etc.</jats:italic> The image restoration dataset and code are available at https://perspective-armirror.github.io/.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"36 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687995","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Augmented reality (AR) mirrors are novel displays that have great potential for commercial applications such as virtual apparel try-on. Typically the camera is placed beside the display, leading to distorted perspectives during user interaction. In this paper, we present a novel approach to address this problem by placing the camera behind a transparent display, thereby providing users with a perspective-aligned experience. Simply placing the camera behind the display can compromise image quality due to optical effects. We meticulously analyze the image formation process, and present an image restoration algorithm that benefits from physics-based data synthesis and network design. Our method significantly improves image quality and outperforms existing methods especially on the underexplored wire and backscatter artifacts. We then carefully design a full AR mirror system including display and camera selection, real-time processing pipeline, and mechanical design. Our user study demonstrates that the system is exceptionally well-received by users, highlighting its advantages over existing camera configurations not only as an AR mirror, but also for video conferencing. Our work represents a step forward in the development of AR mirrors, with potential applications in retail, cosmetics, fashion, etc. The image restoration dataset and code are available at https://perspective-armirror.github.io/.
增强现实(AR)镜是一种新颖的显示器,在虚拟服装试穿等商业应用中具有巨大潜力。通常情况下,摄像头被放置在显示屏旁边,导致用户交互时视角失真。在本文中,我们提出了一种解决这一问题的新方法,即把摄像头放在透明显示屏后面,从而为用户提供视角对齐的体验。由于光学效应,简单地将摄像头置于显示屏后可能会影响图像质量。我们对图像形成过程进行了细致分析,并提出了一种受益于基于物理的数据合成和网络设计的图像修复算法。我们的方法大大提高了图像质量,并优于现有方法,特别是在未充分开发的线和反向散射伪影方面。然后,我们精心设计了一个完整的 AR 镜系统,包括显示器和摄像头的选择、实时处理管道和机械设计。我们的用户研究表明,该系统受到了用户的极大欢迎,凸显了其相对于现有摄像头配置的优势,不仅可用作 AR 镜,还可用于视频会议。我们的工作标志着 AR 镜的开发向前迈进了一步,有望应用于零售、化妆品、时尚等领域。图像还原数据集和代码可在 https://perspective-armirror.github.io/ 上获取。
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.