{"title":"3D Reconstruction with Fast Dipole Sums","authors":"Hanyu Chen, Bailey Miller, Ioannis Gkioulekas","doi":"10.1145/3687914","DOIUrl":null,"url":null,"abstract":"We introduce a method for high-quality 3D reconstruction from multi-view images. Our method uses a new point-based representation, the regularized dipole sum, which generalizes the winding number to allow for interpolation of per-point attributes in point clouds with noisy or outlier points. Using regularized dipole sums, we represent implicit geometry and radiance fields as per-point attributes of a dense point cloud, which we initialize from structure from motion. We additionally derive Barnes-Hut fast summation schemes for accelerated forward and adjoint dipole sum queries. These queries facilitate the use of ray tracing to efficiently and differentiably render images with our point-based representations, and thus update their point attributes to optimize scene geometry and appearance. We evaluate our method in inverse rendering applications against state-of-the-art alternatives, based on ray tracing of neural representations or rasterization of Gaussian point-based representations. Our method significantly improves 3D reconstruction quality and robustness at equal runtimes, while also supporting more general rendering methods such as shadow rays for direct illumination.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"112 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687914","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a method for high-quality 3D reconstruction from multi-view images. Our method uses a new point-based representation, the regularized dipole sum, which generalizes the winding number to allow for interpolation of per-point attributes in point clouds with noisy or outlier points. Using regularized dipole sums, we represent implicit geometry and radiance fields as per-point attributes of a dense point cloud, which we initialize from structure from motion. We additionally derive Barnes-Hut fast summation schemes for accelerated forward and adjoint dipole sum queries. These queries facilitate the use of ray tracing to efficiently and differentiably render images with our point-based representations, and thus update their point attributes to optimize scene geometry and appearance. We evaluate our method in inverse rendering applications against state-of-the-art alternatives, based on ray tracing of neural representations or rasterization of Gaussian point-based representations. Our method significantly improves 3D reconstruction quality and robustness at equal runtimes, while also supporting more general rendering methods such as shadow rays for direct illumination.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.