Flat Blow-up Solutions for the Complex Ginzburg Landau Equation

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Giao Ky Duong, Nejla Nouaili, Hatem Zaag
{"title":"Flat Blow-up Solutions for the Complex Ginzburg Landau Equation","authors":"Giao Ky Duong,&nbsp;Nejla Nouaili,&nbsp;Hatem Zaag","doi":"10.1007/s00205-024-02052-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the complex Ginzburg-Landau equation </p><div><div><span>$$\\begin{aligned} \\partial _t u = (1 + i \\beta ) \\Delta u + (1 + i \\delta ) |u|^{p-1}u - \\alpha u, \\quad \\text {where } \\beta , \\delta , \\alpha \\in {\\mathbb {R}}. \\end{aligned}$$</span></div></div><p>The study focuses on investigating the finite-time blow-up phenomenon, which remains an open question for a broad range of parameters, particularly for <span>\\(\\beta \\)</span> and <span>\\(\\delta \\)</span>. Specifically, for a fixed <span>\\(\\beta \\in {\\mathbb {R}}\\)</span>, the existence of finite-time blow-up solutions for arbitrarily large values of <span>\\( |\\delta | \\)</span> is still unknown. According to a conjecture made by Popp et al. (Physica D Nonlinear Phenom 114:81–107 1998), when <span>\\(\\beta = 0\\)</span> and <span>\\(\\delta \\)</span> is large, blow-up does not occur for <i>generic initial data</i>. In this paper, we show that their conjecture is not valid for all types of initial data, by presenting the existence of blow-up solutions for <span>\\(\\beta = 0\\)</span> and any <span>\\(\\delta \\in {\\mathbb {R}}\\)</span> with different types of blowup.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02052-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the complex Ginzburg-Landau equation

$$\begin{aligned} \partial _t u = (1 + i \beta ) \Delta u + (1 + i \delta ) |u|^{p-1}u - \alpha u, \quad \text {where } \beta , \delta , \alpha \in {\mathbb {R}}. \end{aligned}$$

The study focuses on investigating the finite-time blow-up phenomenon, which remains an open question for a broad range of parameters, particularly for \(\beta \) and \(\delta \). Specifically, for a fixed \(\beta \in {\mathbb {R}}\), the existence of finite-time blow-up solutions for arbitrarily large values of \( |\delta | \) is still unknown. According to a conjecture made by Popp et al. (Physica D Nonlinear Phenom 114:81–107 1998), when \(\beta = 0\) and \(\delta \) is large, blow-up does not occur for generic initial data. In this paper, we show that their conjecture is not valid for all types of initial data, by presenting the existence of blow-up solutions for \(\beta = 0\) and any \(\delta \in {\mathbb {R}}\) with different types of blowup.

复杂金兹堡朗道方程的平面吹胀解法
在本文中,我们考虑了复杂的金兹堡-朗道方程 $$\begin{aligned}\u = (1 + i \beta ) \Delta u + (1 + i \delta ) |u|^{p-1}u - \alpha u, \quad \text {where }\beta , \delta , \alpha 在 {\mathbb {R}} 中。\end{aligned}$$这项研究的重点是研究有限时间炸毁现象,对于广泛的参数,尤其是对于 \(\beta \) 和 \(\delta \),这仍然是一个悬而未决的问题。具体来说,对于一个固定的 \(\beta \in {\mathbb {R}}\),在 \( |\delta | \)的任意大值下存在有限时间炸毁解仍然是未知的。根据 Popp 等人的猜想(Physica D Nonlinear Phenom 114:81-107 1998),当 \(\beta = 0\) 和 \(\delta \) 较大时,对于一般的初始数据,炸毁不会发生。在本文中,我们通过提出不同类型炸裂的 \(\beta = 0\) 和任意 \(\delta \in {\mathbb {R}}\) 的炸裂解的存在,证明了他们的猜想并不适用于所有类型的初始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信