{"title":"Improved electrical conductivity of graphene film using thermal expansion-assisted hot pressing method","authors":"Dongpyo Hong, Gun-Sik Park","doi":"10.1007/s40042-024-01184-7","DOIUrl":null,"url":null,"abstract":"<div><p>Achieving highly conductive graphene films requires the elimination of pores formed during the thermal reduction of graphene oxide (GO). Conventional methods such as hydraulic pressing often struggle to remove these pores effectively, especially in sub-micron large area films for uniform high pressure. In this study, we introduce a thermal expansion-assisted hot pressing (TEHP) technique that leverages the differential thermal expansion between graphite and tungsten to achieve pore-free, highly conductive graphene films. Here we heat the GO film sandwiched between graphite (high thermal expansion coefficient) and tungsten (low thermal expansion coefficient) to 1800 °C where pressures of 13–48 MPa are estimated. The TEHP resulted in graphene films with a smooth, metallic surface, free of macropores. Raman spectroscopy and electron microscopy analyses confirmed the enhanced crystallinity and compactness of the films. The electrical conductivity of the hot-pressed graphene films shows a threefold improvement over normally annealed films. This scalable method offers a viable pathway for producing high-performance graphene films for advanced applications.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 10","pages":"830 - 837"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01184-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving highly conductive graphene films requires the elimination of pores formed during the thermal reduction of graphene oxide (GO). Conventional methods such as hydraulic pressing often struggle to remove these pores effectively, especially in sub-micron large area films for uniform high pressure. In this study, we introduce a thermal expansion-assisted hot pressing (TEHP) technique that leverages the differential thermal expansion between graphite and tungsten to achieve pore-free, highly conductive graphene films. Here we heat the GO film sandwiched between graphite (high thermal expansion coefficient) and tungsten (low thermal expansion coefficient) to 1800 °C where pressures of 13–48 MPa are estimated. The TEHP resulted in graphene films with a smooth, metallic surface, free of macropores. Raman spectroscopy and electron microscopy analyses confirmed the enhanced crystallinity and compactness of the films. The electrical conductivity of the hot-pressed graphene films shows a threefold improvement over normally annealed films. This scalable method offers a viable pathway for producing high-performance graphene films for advanced applications.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.