Tannic acid salt-modified CoFe-layered double hydroxide boosts stable seawater oxidation at an industrial-level current density†

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Zhengwei Cai, Yaxin Guo, Chaoxin Yang, Zixiao Li, Shengjun Sun, Meng Yue, Xiaoyan Wang, Min Zhang, Hefeng Wang, Yongchao Yao, Dongdong Zheng, Asmaa Farouk, Fatma A. Ibrahim, Yanqin Lv, Xuping Sun and Bo Tang
{"title":"Tannic acid salt-modified CoFe-layered double hydroxide boosts stable seawater oxidation at an industrial-level current density†","authors":"Zhengwei Cai, Yaxin Guo, Chaoxin Yang, Zixiao Li, Shengjun Sun, Meng Yue, Xiaoyan Wang, Min Zhang, Hefeng Wang, Yongchao Yao, Dongdong Zheng, Asmaa Farouk, Fatma A. Ibrahim, Yanqin Lv, Xuping Sun and Bo Tang","doi":"10.1039/D4QI02404D","DOIUrl":null,"url":null,"abstract":"<p >Seawater electrolysis for green hydrogen production is a promising approach toward achieving carbon neutrality. However, the abundance of Cl<small><sup>−</sup></small> in seawater can severely corrode catalytic sites, significantly reducing the lifespan of seawater electrolysis systems. Herein, we present metal ion-chelated tannic acid nanoparticles anchored on the CoFe layered double hydroxide nanosheet array on nickel foam (CoFe LDH@CoFe-TA/NF), synthesized <em>via</em> an interfacial coordination assembly method, serving as an efficient and stable electrocatalyst for alkaline seawater oxidation (ASO). The formed CoFe-TA nanoparticles promote the transformation of Co<small><sup>3+</sup></small> into the more robust acid Co<small><sup>4+</sup></small>, thereby favoring the adsorption of the hard base OH<small><sup>−</sup></small> rather than the soft base Cl<small><sup>−</sup></small>. In addition, the CoFe-TA ligand network effectively inhibits metal ion leaching and stabilizes active sites. As a result, the CoFe LDH@CoFe-TA/NF electrode requires a low overpotential of only 379 mV to obtain a current density of 1000 mA cm<small><sup>−2</sup></small> in 1 M KOH + seawater. Furthermore, the electrode also shows a stable operation for 450 h at an industrial-level current density, underscoring its potential for sustainable energy applications.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 1","pages":" 154-160"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d4qi02404d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Seawater electrolysis for green hydrogen production is a promising approach toward achieving carbon neutrality. However, the abundance of Cl in seawater can severely corrode catalytic sites, significantly reducing the lifespan of seawater electrolysis systems. Herein, we present metal ion-chelated tannic acid nanoparticles anchored on the CoFe layered double hydroxide nanosheet array on nickel foam (CoFe LDH@CoFe-TA/NF), synthesized via an interfacial coordination assembly method, serving as an efficient and stable electrocatalyst for alkaline seawater oxidation (ASO). The formed CoFe-TA nanoparticles promote the transformation of Co3+ into the more robust acid Co4+, thereby favoring the adsorption of the hard base OH rather than the soft base Cl. In addition, the CoFe-TA ligand network effectively inhibits metal ion leaching and stabilizes active sites. As a result, the CoFe LDH@CoFe-TA/NF electrode requires a low overpotential of only 379 mV to obtain a current density of 1000 mA cm−2 in 1 M KOH + seawater. Furthermore, the electrode also shows a stable operation for 450 h at an industrial-level current density, underscoring its potential for sustainable energy applications.

Abstract Image

单宁酸盐改性 CoFe 层状双氢氧化物可在工业级电流密度下促进海水稳定氧化
海水电解绿色制氢是实现碳中和的一种可行方法。然而,海水中大量的 Cl- 会严重腐蚀催化位点,从而大大缩短海水电解系统的使用寿命。在此,我们介绍了通过界面配位组装法合成的锚定在泡沫镍上的 CoFe 层状双氢氧化物纳米片阵列上的金属离子螯合单宁酸纳米颗粒(CoFe LDH@CoFe-TA/NF),作为一种高效稳定的碱性海水氧化(ASO)电催化剂。所形成的 CoFe-TA 纳米粒子促进了 CoFe 氧(氢氧化物)的重构和生成,这不仅推动了优异的 ASO 性能,还增强了抗氯引起的腐蚀的能力。此外,CoFe-TA 配体网络还能有效抑制金属离子的浸出并稳定活性位点。因此,CoFe LDH@CoFe-TA/NF 电极只需要 379 mV 的低过电位,就能在 1 M KOH + 海水中获得 1000 mA cm-2 的电流密度。此外,该电极还能在工业水平的电流密度下稳定运行 450 小时,突出了其在可持续能源应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信