L. Mousset, E. Allys, M. A. Price, J. Aumont, J.-M. Delouis, L. Montier, J. D. McEwen
{"title":"Generative models of astrophysical fields with scattering transforms on the sphere","authors":"L. Mousset, E. Allys, M. A. Price, J. Aumont, J.-M. Delouis, L. Montier, J. D. McEwen","doi":"10.1051/0004-6361/202451396","DOIUrl":null,"url":null,"abstract":"Scattering transforms are a new type of summary statistics recently developed for the study of highly non-Gaussian processes, which have been shown to be very promising for astrophysical studies. In particular, they allow one to build generative models of complex non-linear fields from a limited amount of data and have been used as the basis of new statistical component separation algorithms. In the context of upcoming cosmological surveys, such as LiteBIRD for the cosmic microwave background polarisation or the <i>Vera C. Rubin<i/> Observatory and the <i>Euclid<i/> space telescope for study of the large-scale structures of the Universe, extending these tools to spherical data is necessary. In this work, we developed scattering transforms on the sphere and focused on the construction of maximum-entropy generative models of several astrophysical fields. We constructed, from a single target field, generative models of homogeneous astrophysical and cosmological fields, whose samples were quantitatively compared to the target fields using common statistics (power spectrum, pixel probability density function, and Minkowski functionals). Our sampled fields agree well with the target fields, both statistically and visually. We conclude, therefore, that these generative models open up a wide range of new applications for future astrophysical and cosmological studies, particularly those for which very little simulated data is available.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"17 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451396","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Scattering transforms are a new type of summary statistics recently developed for the study of highly non-Gaussian processes, which have been shown to be very promising for astrophysical studies. In particular, they allow one to build generative models of complex non-linear fields from a limited amount of data and have been used as the basis of new statistical component separation algorithms. In the context of upcoming cosmological surveys, such as LiteBIRD for the cosmic microwave background polarisation or the Vera C. Rubin Observatory and the Euclid space telescope for study of the large-scale structures of the Universe, extending these tools to spherical data is necessary. In this work, we developed scattering transforms on the sphere and focused on the construction of maximum-entropy generative models of several astrophysical fields. We constructed, from a single target field, generative models of homogeneous astrophysical and cosmological fields, whose samples were quantitatively compared to the target fields using common statistics (power spectrum, pixel probability density function, and Minkowski functionals). Our sampled fields agree well with the target fields, both statistically and visually. We conclude, therefore, that these generative models open up a wide range of new applications for future astrophysical and cosmological studies, particularly those for which very little simulated data is available.
散射变换是最近为研究高度非高斯过程而开发的一种新型汇总统计,已被证明在天体物理研究中大有可为。特别是,它们允许人们从有限的数据量中建立复杂非线性场的生成模型,并被用作新的统计成分分离算法的基础。在即将开展的宇宙学调查中,如用于宇宙微波背景极化的 LiteBIRD 或用于研究宇宙大尺度结构的 Vera C. Rubin 天文台和 Euclid 空间望远镜,有必要将这些工具扩展到球形数据。在这项工作中,我们开发了球面散射变换,并重点构建了几个天体物理场的最大熵生成模型。我们从单个目标场构建了同质天体物理场和宇宙学场的生成模型,并使用通用统计(功率谱、像素概率密度函数和闵科夫斯基函数)将其样本与目标场进行了定量比较。我们的采样场与目标场在统计和视觉上都非常吻合。因此,我们得出结论,这些生成模型为未来的天体物理学和宇宙学研究开辟了广泛的新应用领域,尤其是那些模拟数据非常少的领域。
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.