Using deep learning and large protein language models to predict protein-membrane interfaces of peripheral membrane proteins.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-05-28 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae078
Dimitra Paranou, Alexios Chatzigoulas, Zoe Cournia
{"title":"Using deep learning and large protein language models to predict protein-membrane interfaces of peripheral membrane proteins.","authors":"Dimitra Paranou, Alexios Chatzigoulas, Zoe Cournia","doi":"10.1093/bioadv/vbae078","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Characterizing interactions at the protein-membrane interface is crucial as abnormal peripheral protein-membrane attachment is involved in the onset of many diseases. However, a limiting factor in studying and understanding protein-membrane interactions is that the membrane-binding domains of peripheral membrane proteins (PMPs) are typically unknown. By applying artificial intelligence techniques in the context of natural language processing (NLP), the accuracy and prediction time for protein-membrane interface analysis can be significantly improved compared to existing methods. Here, we assess whether NLP and protein language models (pLMs) can be used to predict membrane-interacting amino acids for PMPs.</p><p><strong>Results: </strong>We utilize available experimental data and generate protein embeddings from two pLMs (ProtTrans and ESM) to train classifier models. Overall, the results demonstrate the first proof of concept study and the promising potential of using deep learning and pLMs to predict protein-membrane interfaces for PMPs faster, with similar accuracy, and without the need for 3D structural data compared to existing tools.</p><p><strong>Availability and implementation: </strong>The code is available at https://github.com/zoecournia/pLM-PMI. All data are available in the Supplementary material.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae078"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Characterizing interactions at the protein-membrane interface is crucial as abnormal peripheral protein-membrane attachment is involved in the onset of many diseases. However, a limiting factor in studying and understanding protein-membrane interactions is that the membrane-binding domains of peripheral membrane proteins (PMPs) are typically unknown. By applying artificial intelligence techniques in the context of natural language processing (NLP), the accuracy and prediction time for protein-membrane interface analysis can be significantly improved compared to existing methods. Here, we assess whether NLP and protein language models (pLMs) can be used to predict membrane-interacting amino acids for PMPs.

Results: We utilize available experimental data and generate protein embeddings from two pLMs (ProtTrans and ESM) to train classifier models. Overall, the results demonstrate the first proof of concept study and the promising potential of using deep learning and pLMs to predict protein-membrane interfaces for PMPs faster, with similar accuracy, and without the need for 3D structural data compared to existing tools.

Availability and implementation: The code is available at https://github.com/zoecournia/pLM-PMI. All data are available in the Supplementary material.

利用深度学习和大型蛋白质语言模型预测外周膜蛋白的蛋白质-膜界面。
动机表征蛋白质-膜界面的相互作用至关重要,因为异常的外周蛋白质-膜附着与许多疾病的发病有关。然而,研究和理解蛋白质-膜相互作用的一个限制因素是外周膜蛋白(PMPs)的膜结合域通常是未知的。与现有方法相比,在自然语言处理(NLP)的背景下应用人工智能技术,可以显著提高蛋白质-膜界面分析的准确性和预测时间。在此,我们评估了 NLP 和蛋白质语言模型(pLMs)是否可用于预测 PMP 的膜相互作用氨基酸:我们利用现有的实验数据,并从两个蛋白质语言模型(ProtTrans 和 ESM)中生成蛋白质嵌入来训练分类器模型。总体而言,研究结果表明,与现有工具相比,使用深度学习和 pLMs 预测 PMP 蛋白质-膜界面的速度更快、准确性相似,而且无需三维结构数据,这是首次概念验证研究,而且潜力巨大:代码见 https://github.com/zoecournia/pLM-PMI。所有数据可在补充材料中获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信