{"title":"TCKAN: a novel integrated network model for predicting mortality risk in sepsis patients.","authors":"Fanglin Dong, Shibo Li, Weihua Li","doi":"10.1007/s11517-024-03245-2","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis poses a major global health threat, accounting for millions of deaths annually and significant economic costs. Accurately predicting the risk of mortality in sepsis patients enables early identification, promotes the efficient allocation of medical resources, and facilitates timely interventions, thereby improving patient outcomes. Current methods typically utilize only one type of data-either constant, temporal, or ICD codes. This study introduces a novel approach, the Time-Constant Kolmogorov-Arnold Network (TCKAN), which uniquely integrates temporal data, constant data, and ICD codes within a single predictive model. Unlike existing methods that typically rely on one type of data, TCKAN leverages a multi-modal data integration strategy, resulting in superior predictive accuracy and robustness in identifying high-risk sepsis patients. Validated against the MIMIC-III and MIMIC-IV datasets, TCKAN surpasses existing machine learning and deep learning methods in accuracy, sensitivity, and specificity. Notably, TCKAN achieved AUCs of 87.76% and 88.07%, demonstrating superior capability in identifying high-risk patients. Additionally, TCKAN effectively combats the prevalent issue of data imbalance in clinical settings, improving the detection of patients at elevated risk of mortality and facilitating timely interventions. These results confirm the model's effectiveness and its potential to transform patient management and treatment optimization in clinical practice. Although the TCKAN model has already incorporated temporal, constant, and ICD code data, future research could include more diverse medical data types, such as imaging and laboratory test results, to achieve a more comprehensive data integration and further improve predictive accuracy.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03245-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis poses a major global health threat, accounting for millions of deaths annually and significant economic costs. Accurately predicting the risk of mortality in sepsis patients enables early identification, promotes the efficient allocation of medical resources, and facilitates timely interventions, thereby improving patient outcomes. Current methods typically utilize only one type of data-either constant, temporal, or ICD codes. This study introduces a novel approach, the Time-Constant Kolmogorov-Arnold Network (TCKAN), which uniquely integrates temporal data, constant data, and ICD codes within a single predictive model. Unlike existing methods that typically rely on one type of data, TCKAN leverages a multi-modal data integration strategy, resulting in superior predictive accuracy and robustness in identifying high-risk sepsis patients. Validated against the MIMIC-III and MIMIC-IV datasets, TCKAN surpasses existing machine learning and deep learning methods in accuracy, sensitivity, and specificity. Notably, TCKAN achieved AUCs of 87.76% and 88.07%, demonstrating superior capability in identifying high-risk patients. Additionally, TCKAN effectively combats the prevalent issue of data imbalance in clinical settings, improving the detection of patients at elevated risk of mortality and facilitating timely interventions. These results confirm the model's effectiveness and its potential to transform patient management and treatment optimization in clinical practice. Although the TCKAN model has already incorporated temporal, constant, and ICD code data, future research could include more diverse medical data types, such as imaging and laboratory test results, to achieve a more comprehensive data integration and further improve predictive accuracy.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).