{"title":"Impact of evolutionary relatedness on species diversification and tree shape.","authors":"Tianjian Qin, Luis Valente, Rampal S Etienne","doi":"10.1016/j.jtbi.2024.111992","DOIUrl":null,"url":null,"abstract":"<p><p>Slowdowns in lineage accumulation are often observed in phylogenies of extant species. One explanation is the presence of ecological limits to diversity and hence to diversification. Previous research has examined whether and how species richness (SR) impacts diversification rates, but rarely considered the evolutionary relatedness (ER) between species, although ER can affect the degree of interaction between species, which likely sets these limits. To understand the influences of ER on species diversification and the interplay between SR and ER, we present a simple birth-death model in which the speciation rate depends on the ER. We use different metrics of ER that operate at different scales, ranging from branch/lineage-specific to clade-wide scales. We find that the scales at which an effect of ER operates yield distinct patterns in various tree statistics. When ER operates across the whole tree, we observe smaller and more balanced trees, with speciation rates distributed more evenly across the tips than in scenarios with lineage-specific ER effects. Importantly, we find that negative SR dependence of speciation masks the impact of ER on some of the tree statistics. Our model allows diverse evolutionary trajectories for producing imbalanced trees, which are commonly observed in empirical phylogenies but have been challenging to replicate with earlier models.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"111992"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2024.111992","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Slowdowns in lineage accumulation are often observed in phylogenies of extant species. One explanation is the presence of ecological limits to diversity and hence to diversification. Previous research has examined whether and how species richness (SR) impacts diversification rates, but rarely considered the evolutionary relatedness (ER) between species, although ER can affect the degree of interaction between species, which likely sets these limits. To understand the influences of ER on species diversification and the interplay between SR and ER, we present a simple birth-death model in which the speciation rate depends on the ER. We use different metrics of ER that operate at different scales, ranging from branch/lineage-specific to clade-wide scales. We find that the scales at which an effect of ER operates yield distinct patterns in various tree statistics. When ER operates across the whole tree, we observe smaller and more balanced trees, with speciation rates distributed more evenly across the tips than in scenarios with lineage-specific ER effects. Importantly, we find that negative SR dependence of speciation masks the impact of ER on some of the tree statistics. Our model allows diverse evolutionary trajectories for producing imbalanced trees, which are commonly observed in empirical phylogenies but have been challenging to replicate with earlier models.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.