Dong Chen, Yuquan Wang, Dapeng Shi, Yunlong Cao, Yue-Qing Hu
{"title":"Instrumental Variable Model Average With Applications in Nonlinear Causal Inference.","authors":"Dong Chen, Yuquan Wang, Dapeng Shi, Yunlong Cao, Yue-Qing Hu","doi":"10.1002/sim.10269","DOIUrl":null,"url":null,"abstract":"<p><p>The instrumental variable method is widely used in causal inference research to improve the accuracy of estimating causal effects. However, the weak correlation between instruments and exposure, as well as the direct impact of instruments on the outcome, can lead to biased estimates. To mitigate the bias introduced by such instruments in nonlinear causal inference, we propose a two-stage nonlinear causal effect estimation based on model averaging. The model uses different subsets of instruments in the first stage to predict exposure after a nonlinear transformation with the help of sliced inverse regression. In the second stage, adaptive Lasso penalty is applied to instruments to obtain the estimation of causal effect. We prove that the proposed estimator exhibits favorable asymptotic properties and evaluate its performance through a series of numerical studies, demonstrating its effectiveness in identifying nonlinear causal effects and its capability to handle scenarios with weak and invalid instruments. We apply the proposed method to the Atherosclerosis Risk in Communities dataset to investigate the relationship between BMI and hypertension.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10269","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The instrumental variable method is widely used in causal inference research to improve the accuracy of estimating causal effects. However, the weak correlation between instruments and exposure, as well as the direct impact of instruments on the outcome, can lead to biased estimates. To mitigate the bias introduced by such instruments in nonlinear causal inference, we propose a two-stage nonlinear causal effect estimation based on model averaging. The model uses different subsets of instruments in the first stage to predict exposure after a nonlinear transformation with the help of sliced inverse regression. In the second stage, adaptive Lasso penalty is applied to instruments to obtain the estimation of causal effect. We prove that the proposed estimator exhibits favorable asymptotic properties and evaluate its performance through a series of numerical studies, demonstrating its effectiveness in identifying nonlinear causal effects and its capability to handle scenarios with weak and invalid instruments. We apply the proposed method to the Atherosclerosis Risk in Communities dataset to investigate the relationship between BMI and hypertension.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.