{"title":"Extended Activity Cliffs-Driven Approaches on Data Splitting for the Study of Bioactivity Machine Learning Predictions.","authors":"Kenneth López-Pérez, Ramón Alain Miranda-Quintana","doi":"10.1002/minf.202400054","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of Activity Cliffs (ACs) has been known to represent a challenge for QSAR modeling. With its high data dependency, Machine Learning QSAR models will be directly influenced by the activity landscape. We propose several extended similarity and extended SALI methods to study the implications of ACs distribution on the training and test sets on the model's errors. Ununiform ACs and chemical space distribution tend to lead to worse models than the proposed uniform methods. ML modeling on AC-rich sets needs to be analyzed case-by-case. Proposed methods can be used as a tool to study the datasets, but as far as generalization, random splitting was the better-performing data splitting alternative overall.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400054"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400054","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of Activity Cliffs (ACs) has been known to represent a challenge for QSAR modeling. With its high data dependency, Machine Learning QSAR models will be directly influenced by the activity landscape. We propose several extended similarity and extended SALI methods to study the implications of ACs distribution on the training and test sets on the model's errors. Ununiform ACs and chemical space distribution tend to lead to worse models than the proposed uniform methods. ML modeling on AC-rich sets needs to be analyzed case-by-case. Proposed methods can be used as a tool to study the datasets, but as far as generalization, random splitting was the better-performing data splitting alternative overall.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.