Longitudinal multimodal profiling of IDH-wildtype glioblastoma reveals the molecular evolution and cellular phenotypes underlying prognostically different treatment responses.

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY
Calixto-Hope G Lucas, Nadeem N Al-Adli, Jacob S Young, Rohit Gupta, Ramin A Morshed, Jasper Wu, Ajay Ravindranathan, Anny Shai, Nancy Ann Oberheim Bush, Jennie W Taylor, John de Groot, Javier E Villanueva-Meyer, Melike Pekmezci, Arie Perry, Andrew W Bollen, Philip V Theodosopoulos, Manish K Aghi, Edward F Chang, Shawn L Hervey-Jumper, David R Raleigh, Annette M Molinaro, Joseph F Costello, Aaron A Diaz, Jennifer L Clarke, Nicholas A Butowski, Joanna J Phillips, Susan M Chang, Mitchel S Berger, David A Solomon
{"title":"Longitudinal multimodal profiling of IDH-wildtype glioblastoma reveals the molecular evolution and cellular phenotypes underlying prognostically different treatment responses.","authors":"Calixto-Hope G Lucas, Nadeem N Al-Adli, Jacob S Young, Rohit Gupta, Ramin A Morshed, Jasper Wu, Ajay Ravindranathan, Anny Shai, Nancy Ann Oberheim Bush, Jennie W Taylor, John de Groot, Javier E Villanueva-Meyer, Melike Pekmezci, Arie Perry, Andrew W Bollen, Philip V Theodosopoulos, Manish K Aghi, Edward F Chang, Shawn L Hervey-Jumper, David R Raleigh, Annette M Molinaro, Joseph F Costello, Aaron A Diaz, Jennifer L Clarke, Nicholas A Butowski, Joanna J Phillips, Susan M Chang, Mitchel S Berger, David A Solomon","doi":"10.1093/neuonc/noae214","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite recent advances in the biology of IDH-wildtype glioblastoma, it remains a devastating disease with median survival of less than 2 years. However, the molecular underpinnings of the heterogeneous response to the current standard-of-care treatment regimen consisting of maximal safe resection, adjuvant radiation, and chemotherapy with temozolomide remain unknown.</p><p><strong>Methods: </strong>Comprehensive histopathologic, genomic, and epigenomic evaluation of paired initial and recurrent glioblastoma specimens from 106 patients was performed to investigate the molecular evolution and cellular phenotypes underlying differential treatment responses.</p><p><strong>Results: </strong>While TERT promoter mutation and CDKN2A homozygous deletion were early events during gliomagenesis shared by initial and recurrent tumors, most other recurrent genetic alterations (eg, EGFR, PTEN, and NF1) were commonly private to initial or recurrent tumors indicating acquisition later during clonal evolution. Furthermore, glioblastomas exhibited heterogeneous epigenomic evolution with subsets becoming more globally hypermethylated, hypomethylated, or remaining stable. Glioblastoma that underwent sarcomatous transformation had shorter interval to recurrence and were significantly enriched in NF1, TP53, and RB1 alterations and the mesenchymal epigenetic class. Patients who developed somatic hypermutation following temozolomide treatment had significantly longer interval to disease recurrence and prolonged overall survival, and increased methylation at 4 specific CpG sites in the promoter region of MGMT was significantly associated with this development of hypermutation. Finally, an epigenomic evolution signature incorporating change in DNA methylation levels across 347 critical CpG sites was developed that significantly correlated with clinical outcomes.</p><p><strong>Conclusions: </strong>Glioblastoma undergoes heterogeneous genetic, epigenetic, and cellular evolution that underlies prognostically different treatment responses.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae214","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Despite recent advances in the biology of IDH-wildtype glioblastoma, it remains a devastating disease with median survival of less than 2 years. However, the molecular underpinnings of the heterogeneous response to the current standard-of-care treatment regimen consisting of maximal safe resection, adjuvant radiation, and chemotherapy with temozolomide remain unknown.

Methods: Comprehensive histopathologic, genomic, and epigenomic evaluation of paired initial and recurrent glioblastoma specimens from 106 patients was performed to investigate the molecular evolution and cellular phenotypes underlying differential treatment responses.

Results: While TERT promoter mutation and CDKN2A homozygous deletion were early events during gliomagenesis shared by initial and recurrent tumors, most other recurrent genetic alterations (eg, EGFR, PTEN, and NF1) were commonly private to initial or recurrent tumors indicating acquisition later during clonal evolution. Furthermore, glioblastomas exhibited heterogeneous epigenomic evolution with subsets becoming more globally hypermethylated, hypomethylated, or remaining stable. Glioblastoma that underwent sarcomatous transformation had shorter interval to recurrence and were significantly enriched in NF1, TP53, and RB1 alterations and the mesenchymal epigenetic class. Patients who developed somatic hypermutation following temozolomide treatment had significantly longer interval to disease recurrence and prolonged overall survival, and increased methylation at 4 specific CpG sites in the promoter region of MGMT was significantly associated with this development of hypermutation. Finally, an epigenomic evolution signature incorporating change in DNA methylation levels across 347 critical CpG sites was developed that significantly correlated with clinical outcomes.

Conclusions: Glioblastoma undergoes heterogeneous genetic, epigenetic, and cellular evolution that underlies prognostically different treatment responses.

IDH-野生型胶质母细胞瘤的纵向多模态特征分析揭示了预后不同的治疗反应背后的分子演变和细胞表型。
背景:尽管IDH-野生型胶质母细胞瘤的生物学研究取得了最新进展,但它仍然是一种毁灭性疾病,中位生存期不到2年。然而,对于目前由最大安全切除、辅助放疗和替莫唑胺化疗组成的标准治疗方案的异质性反应,其分子基础仍然未知:方法:对106名患者的配对初发和复发胶质母细胞瘤标本进行组织病理学、基因组学和表观基因组学综合评估,研究不同治疗反应背后的分子演变和细胞表型:结果:TERT启动子突变和CDKN2A同基因缺失是初发和复发肿瘤共有的胶质瘤发生过程中的早期事件,而大多数其他复发基因改变(如表皮生长因子受体、PTEN和NF1)通常发生在初发或复发肿瘤中,这表明它们是在克隆进化的后期获得的。此外,胶质母细胞瘤还表现出表观基因组的异质性进化,其亚群变得更全面地高甲基化、低甲基化或保持稳定。发生肉瘤样转化的胶质母细胞瘤复发间隔较短,NF1、TP53和RB1改变以及间质表观遗传类别明显丰富。在接受替莫唑胺治疗后发生体细胞高突变的患者,其疾病复发间隔时间明显更长,总生存期也更长,而MGMT启动子区4个特定CpG位点的甲基化增加与高突变的发生显著相关。最后,347个关键CpG位点的DNA甲基化水平变化被纳入表观基因组进化特征,该特征与临床结果有显著相关性:结论:胶质母细胞瘤经历了遗传学、表观遗传学和细胞学的异质性演变,这是预后不同的治疗反应的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信