C-di-AMP accumulation disrupts glutathione metabolism in Listeria monocytogenes.

IF 2.9 3区 医学 Q3 IMMUNOLOGY
Cheta Siletti, Matthew Freeman, Hung H Dang, Zepeng Tu, David M Stevenson, Daniel Amador-Noguez, John-Demian Sauer, TuAnh N Huynh
{"title":"C-di-AMP accumulation disrupts glutathione metabolism in <i>Listeria monocytogenes</i>.","authors":"Cheta Siletti, Matthew Freeman, Hung H Dang, Zepeng Tu, David M Stevenson, Daniel Amador-Noguez, John-Demian Sauer, TuAnh N Huynh","doi":"10.1128/iai.00440-24","DOIUrl":null,"url":null,"abstract":"<p><p>C-di-AMP homeostasis is critical for bacterial stress response, cell wall integrity, and virulence. Except for osmotic stress response, the molecular mechanisms underlying other processes are not well defined. A <i>Listeria monocytogenes</i> mutant lacking both c-di-AMP phosphodiesterases, denoted as the ΔPDE mutant, is significantly attenuated in the mouse model of systemic infection. We utilized the ΔPDE mutant to define the molecular functions of c-di-AMP. RNAseq revealed that the ΔPDE mutant is significantly impaired for the expression of virulence genes regulated by the master transcription factor PrfA, which is activated by reduced glutathione (GSH) during infection. Subsequent quantitative gene expression analyses revealed that the ΔPDE strain is defective for PrfA-regulated gene expression both at the basal level and upon activation by GSH. We further found the ΔPDE strain to be significantly depleted for cytoplasmic GSH and impaired for GSH uptake. The ΔPDE strain was also deficient in GSH under conditions that activate GSH synthesis by the synthase GshF and upon constitutive expression of <i>gshF</i>, suggesting that c-di-AMP accumulation inhibits GSH synthesis activity or promotes GSH catabolism. A constitutively active PrfA* variant restored virulence gene expression in ΔPDE in broth cultures supplemented with GSH but did not rescue virulence defect <i>in vivo</i>. Therefore, virulence attenuation at high c-di-AMP is likely associated with defects outside of the PrfA regulon. For instance, the ΔPDE strain was sensitive to oxidative stress, a phenotype exacerbated in the absence of GshF. Our data reveal GSH metabolism as another pathway that is regulated by c-di-AMP.IMPORTANCEC-di-AMP regulates both bacterial pathogenesis and interactions with the host. Although c-di-AMP is essential in many bacteria, its accumulation also attenuates the virulence of many bacterial pathogens. Therefore, disrupting c-di-AMP homeostasis is a promising antibacterial treatment strategy and has inspired several studies that screened for chemical inhibitors of c-di-AMP phosphodiesterases. However, the molecular functions of c-di-AMP are still not fully defined, and the underlying mechanisms for attenuated virulence at high c-di-AMP levels are unclear. Our analyses in <i>Listeria monocytogenes</i> indicate that virulence-related defects are likely outside of the virulence gene regulon. We found c-di-AMP accumulation to impair <i>L. monocytogenes</i> virulence gene expression and disrupt GSH metabolism. Further studies are necessary to establish the relative contributions of these regulations to virulence and host adaptation.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0044024"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00440-24","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

C-di-AMP homeostasis is critical for bacterial stress response, cell wall integrity, and virulence. Except for osmotic stress response, the molecular mechanisms underlying other processes are not well defined. A Listeria monocytogenes mutant lacking both c-di-AMP phosphodiesterases, denoted as the ΔPDE mutant, is significantly attenuated in the mouse model of systemic infection. We utilized the ΔPDE mutant to define the molecular functions of c-di-AMP. RNAseq revealed that the ΔPDE mutant is significantly impaired for the expression of virulence genes regulated by the master transcription factor PrfA, which is activated by reduced glutathione (GSH) during infection. Subsequent quantitative gene expression analyses revealed that the ΔPDE strain is defective for PrfA-regulated gene expression both at the basal level and upon activation by GSH. We further found the ΔPDE strain to be significantly depleted for cytoplasmic GSH and impaired for GSH uptake. The ΔPDE strain was also deficient in GSH under conditions that activate GSH synthesis by the synthase GshF and upon constitutive expression of gshF, suggesting that c-di-AMP accumulation inhibits GSH synthesis activity or promotes GSH catabolism. A constitutively active PrfA* variant restored virulence gene expression in ΔPDE in broth cultures supplemented with GSH but did not rescue virulence defect in vivo. Therefore, virulence attenuation at high c-di-AMP is likely associated with defects outside of the PrfA regulon. For instance, the ΔPDE strain was sensitive to oxidative stress, a phenotype exacerbated in the absence of GshF. Our data reveal GSH metabolism as another pathway that is regulated by c-di-AMP.IMPORTANCEC-di-AMP regulates both bacterial pathogenesis and interactions with the host. Although c-di-AMP is essential in many bacteria, its accumulation also attenuates the virulence of many bacterial pathogens. Therefore, disrupting c-di-AMP homeostasis is a promising antibacterial treatment strategy and has inspired several studies that screened for chemical inhibitors of c-di-AMP phosphodiesterases. However, the molecular functions of c-di-AMP are still not fully defined, and the underlying mechanisms for attenuated virulence at high c-di-AMP levels are unclear. Our analyses in Listeria monocytogenes indicate that virulence-related defects are likely outside of the virulence gene regulon. We found c-di-AMP accumulation to impair L. monocytogenes virulence gene expression and disrupt GSH metabolism. Further studies are necessary to establish the relative contributions of these regulations to virulence and host adaptation.

C-di-AMP 积累会破坏李斯特菌的谷胱甘肽代谢。
C-di-AMP 平衡对细菌的应激反应、细胞壁完整性和毒力至关重要。除渗透应激反应外,其他过程的分子机制尚未明确。缺乏两种 c-di-AMP 磷酸二酯酶的李斯特菌突变体(称为 ΔPDE 突变体)在小鼠全身感染模型中的作用显著减弱。我们利用ΔPDE突变体来确定c-di-AMP的分子功能。RNAseq 分析发现,ΔPDE 突变体受主转录因子 PrfA 调控的毒力基因表达明显受损,而 PrfA 在感染过程中会被还原型谷胱甘肽(GSH)激活。随后的定量基因表达分析表明,ΔPDE菌株在基础水平和被GSH激活时,PrfA调控的基因表达都有缺陷。我们进一步发现,ΔPDE 菌株的细胞质 GSH 显著减少,GSH 摄取能力受损。在激活合成酶 GshF 合成 GSH 的条件下以及组成型表达 gshF 时,ΔPDE 菌株也缺乏 GSH,这表明 c-di-AMP 积累抑制了 GSH 合成活性或促进了 GSH 分解。在补充了 GSH 的肉汤培养物中,组成型活性 PrfA* 变体可恢复 ΔPDE 的毒力基因表达,但不能挽救体内的毒力缺陷。因此,高c-di-AMP条件下的毒力衰减可能与PrfA调控子之外的缺陷有关。例如,ΔPDE 菌株对氧化应激很敏感,这种表型在 GshF 缺失时会加剧。我们的数据揭示了 GSH 代谢是受 c-di-AMP 调节的另一个途径。虽然 c-di-AMP 在许多细菌中都必不可少,但它的积累也会削弱许多细菌病原体的毒力。因此,破坏 c-di-AMP 的平衡是一种很有前景的抗菌治疗策略,并激发了多项研究对 c-di-AMP 磷酸二酯酶化学抑制剂的筛选。然而,c-di-AMP 的分子功能仍未完全明确,高水平 c-di-AMP 毒力减弱的潜在机制也不清楚。我们对单核细胞增生李斯特菌的分析表明,与毒力相关的缺陷可能在毒力基因调控子之外。我们发现 c-di-AMP 积累会损害单核细胞增生李斯特菌毒力基因的表达,并破坏 GSH 代谢。要确定这些调控对毒力和宿主适应的相对贡献,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infection and Immunity
Infection and Immunity 医学-传染病学
CiteScore
6.00
自引率
6.50%
发文量
268
审稿时长
3 months
期刊介绍: Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信