Soyeon Kim, Yidi Qin, Hyun Jung Park, Rebecca I Caldino Bohn, Molin Yue, Zhongli Xu, Erick Forno, Wei Chen, Juan C Celedón
{"title":"MOSES: a methylation-based gene association approach for unveiling environmentally regulated genes linked to a trait or disease.","authors":"Soyeon Kim, Yidi Qin, Hyun Jung Park, Rebecca I Caldino Bohn, Molin Yue, Zhongli Xu, Erick Forno, Wei Chen, Juan C Celedón","doi":"10.1186/s13148-024-01776-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DNA methylation is a critical regulatory mechanism of gene expression, influencing various human diseases and traits. While traditional expression quantitative trait loci (eQTL) studies have helped elucidate the genetic regulation of gene expression, there is a growing need to explore environmental influences on gene expression. Existing methods such as PrediXcan and FUSION focus on genotype-based associations but overlook the impact of environmental factors. To address this gap, we present MOSES (methylation-based gene association), a novel approach that utilizes DNA methylation to identify environmentally regulated genes associated with traits or diseases without relying on measured gene expression.</p><p><strong>Results: </strong>MOSES involves training, imputation, and association testing. It employs elastic-net penalized regression models to estimate the influence of CpGs and SNPs (if available) on gene expression. We developed and compared four MOSES versions incorporating different methylation and genetic data: (1) cis-DNA methylation within 1 Mb of promoter regions, (2) both cis-SNPs and cis-CpGs, 3) both cis- and a part of trans- CpGs (±5Mb away) from promoter regions), and 4) long-range DNA methylation (±10 Mb away) from promoter regions. Our analysis using nasal epithelium and white blood cell data from the Epigenetic Variation and Childhood Asthma in Puerto Ricans (EVA-PR) study demonstrated that MOSES, particularly the version incorporating long-range CpGs (MOSES-DNAm 10 M), significantly outperformed existing methods like PrediXcan, MethylXcan, and Biomethyl in predicting gene expression. MOSES-DNAm 10 M identified more differentially expressed genes (DEGs) associated with atopic asthma, particularly those involved in immune pathways, highlighting its superior performance in uncovering environmentally regulated genes. Further application of MOSES to lung tissue data from idiopathic pulmonary fibrosis (IPF) patients confirmed its robustness and versatility across different diseases and tissues.</p><p><strong>Conclusion: </strong>MOSES represents an innovative advancement in gene association studies, leveraging DNA methylation to capture the influence of environmental factors on gene expression. By incorporating long-range CpGs, MOSES-DNAm 10 M provides superior predictive accuracy and gene association capabilities compared to traditional genotype-based methods. This novel approach offers valuable insights into the complex interplay between genetics and the environment, enhancing our understanding of disease mechanisms and potentially guiding therapeutic strategies. The user-friendly MOSES R package is publicly available to advance studies in various diseases, including immune-related conditions like asthma.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"161"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-024-01776-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: DNA methylation is a critical regulatory mechanism of gene expression, influencing various human diseases and traits. While traditional expression quantitative trait loci (eQTL) studies have helped elucidate the genetic regulation of gene expression, there is a growing need to explore environmental influences on gene expression. Existing methods such as PrediXcan and FUSION focus on genotype-based associations but overlook the impact of environmental factors. To address this gap, we present MOSES (methylation-based gene association), a novel approach that utilizes DNA methylation to identify environmentally regulated genes associated with traits or diseases without relying on measured gene expression.
Results: MOSES involves training, imputation, and association testing. It employs elastic-net penalized regression models to estimate the influence of CpGs and SNPs (if available) on gene expression. We developed and compared four MOSES versions incorporating different methylation and genetic data: (1) cis-DNA methylation within 1 Mb of promoter regions, (2) both cis-SNPs and cis-CpGs, 3) both cis- and a part of trans- CpGs (±5Mb away) from promoter regions), and 4) long-range DNA methylation (±10 Mb away) from promoter regions. Our analysis using nasal epithelium and white blood cell data from the Epigenetic Variation and Childhood Asthma in Puerto Ricans (EVA-PR) study demonstrated that MOSES, particularly the version incorporating long-range CpGs (MOSES-DNAm 10 M), significantly outperformed existing methods like PrediXcan, MethylXcan, and Biomethyl in predicting gene expression. MOSES-DNAm 10 M identified more differentially expressed genes (DEGs) associated with atopic asthma, particularly those involved in immune pathways, highlighting its superior performance in uncovering environmentally regulated genes. Further application of MOSES to lung tissue data from idiopathic pulmonary fibrosis (IPF) patients confirmed its robustness and versatility across different diseases and tissues.
Conclusion: MOSES represents an innovative advancement in gene association studies, leveraging DNA methylation to capture the influence of environmental factors on gene expression. By incorporating long-range CpGs, MOSES-DNAm 10 M provides superior predictive accuracy and gene association capabilities compared to traditional genotype-based methods. This novel approach offers valuable insights into the complex interplay between genetics and the environment, enhancing our understanding of disease mechanisms and potentially guiding therapeutic strategies. The user-friendly MOSES R package is publicly available to advance studies in various diseases, including immune-related conditions like asthma.
期刊介绍:
Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.