Eric Wynne, Junghyo Yoon, Dohyun Park, Mingyang Cui, Caitlin Morris, Jaeweon Lee, Zhao Wang, Seongkyu Yoon, Jongyoon Han
{"title":"Regeneration of Spent Culture Media for Sustainable and Continuous mAb Production via Ion Concentration Polarization.","authors":"Eric Wynne, Junghyo Yoon, Dohyun Park, Mingyang Cui, Caitlin Morris, Jaeweon Lee, Zhao Wang, Seongkyu Yoon, Jongyoon Han","doi":"10.1002/bit.28888","DOIUrl":null,"url":null,"abstract":"<p><p>In modern bioprocessing, cell culture media is one of the most significant cost drivers, yet the nutrients and other critical factors in the media are often not fully utilized. With the renewed emphasis on reducing the cost of bioprocessing, there is much interest in reducing the overall use of cell culture media. In this work, we introduce a mesoscale microfluidic separation device based on the ion concentration polarization (ICP) process to regenerate the spent media for reuse by removing critical waste products from the cell culture that are known to inhibit the growth of the cells. We demonstrated that up to 75% of spent culture media can be regenerated and reused without affecting the cell viability. A detailed analysis of the materials consumed during antibody production indicated that one could improve the water process mass intensity by up to 33% by regenerating and recycling the media. Given that ICP separation systems have already been scaled up to support large-volume processing, it would be feasible to deploy this technology for manufacturing scale bioreactors (e.g., 50 L perfusion culture of CHO cells), reducing the overall operation cost and water use.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28888","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In modern bioprocessing, cell culture media is one of the most significant cost drivers, yet the nutrients and other critical factors in the media are often not fully utilized. With the renewed emphasis on reducing the cost of bioprocessing, there is much interest in reducing the overall use of cell culture media. In this work, we introduce a mesoscale microfluidic separation device based on the ion concentration polarization (ICP) process to regenerate the spent media for reuse by removing critical waste products from the cell culture that are known to inhibit the growth of the cells. We demonstrated that up to 75% of spent culture media can be regenerated and reused without affecting the cell viability. A detailed analysis of the materials consumed during antibody production indicated that one could improve the water process mass intensity by up to 33% by regenerating and recycling the media. Given that ICP separation systems have already been scaled up to support large-volume processing, it would be feasible to deploy this technology for manufacturing scale bioreactors (e.g., 50 L perfusion culture of CHO cells), reducing the overall operation cost and water use.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.