Synthesis and biological evaluation of a new class of azole urea compounds as Akt inhibitors with promising anticancer activity in pancreatic cancer models.
Camilla Pecoraro, Fabio Scianò, Daniela Carbone, Geng Xu, Juan Deng, Stella Cascioferro, Elisa Giovannetti, Patrizia Diana, Barbara Parrino
{"title":"Synthesis and biological evaluation of a new class of azole urea compounds as Akt inhibitors with promising anticancer activity in pancreatic cancer models.","authors":"Camilla Pecoraro, Fabio Scianò, Daniela Carbone, Geng Xu, Juan Deng, Stella Cascioferro, Elisa Giovannetti, Patrizia Diana, Barbara Parrino","doi":"10.1016/j.bioorg.2024.107959","DOIUrl":null,"url":null,"abstract":"<p><p>The PI3K/Akt pathway is crucial in numerous cellular functions such as cell growth, survival proliferation and movement in both normal and cancer cells. It plays also a key role in epithelial-mesenchymal transitions and angiogenesis during the tumorigenesis processes. Since many transformative events in cancer are driven by increased PI3K/Akt pathway signaling, Akt is considered a valuable target for developing new therapies against various tumor types, including pancreatic cancer. This is because the PI3K/AKT/mTOR pathway is a key downstream effector of RAS, and RAS activation is the most prominent genetic alteration in pancreatic cancer. Herein we report the synthesis and the biological evaluation of a new series of azole urea compounds that exhibited promising antiproliferative and antimigratory activities against pancreatic cancer cells through an Akt inhibition mechanism. These effects were demonstrated using a variety of assays, including Sulforhodamine B, cell-cycle, wound-healing, and kinase activity, apotposis and ELISA assays. Additionally, the anticancer properties of the most active compound in the series were confirmed in the 3D spheroid model of PATU-T cells.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107959"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107959","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The PI3K/Akt pathway is crucial in numerous cellular functions such as cell growth, survival proliferation and movement in both normal and cancer cells. It plays also a key role in epithelial-mesenchymal transitions and angiogenesis during the tumorigenesis processes. Since many transformative events in cancer are driven by increased PI3K/Akt pathway signaling, Akt is considered a valuable target for developing new therapies against various tumor types, including pancreatic cancer. This is because the PI3K/AKT/mTOR pathway is a key downstream effector of RAS, and RAS activation is the most prominent genetic alteration in pancreatic cancer. Herein we report the synthesis and the biological evaluation of a new series of azole urea compounds that exhibited promising antiproliferative and antimigratory activities against pancreatic cancer cells through an Akt inhibition mechanism. These effects were demonstrated using a variety of assays, including Sulforhodamine B, cell-cycle, wound-healing, and kinase activity, apotposis and ELISA assays. Additionally, the anticancer properties of the most active compound in the series were confirmed in the 3D spheroid model of PATU-T cells.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.