Elias Le Boudec, Hamidreza Karami, Nicolas Mora, Farhad Rachidi, Marcos Rubinstein, Felix Vega
{"title":"Spatiotemporal energy-density distribution of time-reversed electromagnetic fields","authors":"Elias Le Boudec, Hamidreza Karami, Nicolas Mora, Farhad Rachidi, Marcos Rubinstein, Felix Vega","doi":"10.1049/smt2.12196","DOIUrl":null,"url":null,"abstract":"<p>Time reversal exploits the invariance of electromagnetic wave propagation in reciprocal and lossless media to localize radiating sources. Time-reversed measurements are back-propagated in a simulated domain and converge to the unknown source location. The focusing time (i.e. the simulation instant at which the fields converge to the source location) and the source location can be identified using field maxima, entropy, time kurtosis, and space kurtosis. This paper analyses the spatial energy-density distribution of time-reversed electromagnetic fields by introducing a convergence metric based on the spatial average and variance of the energy density. It is analytically proven that the proposed metric identifies the focusing time and the source location, with direct links to the source frequency content. The analytical results are verified in a free-space numerical simulation and the proposed metric is then compared to existing ones in a simulated inhomogeneous medium. Next, this metric is applied and compared in an experimental case study to localize electromagnetic interference sources. The proposed metric outperforms existing ones to identify the focusing time and can also be used to locate the source. Finally, because of its tensorial nature, it can handle anisotropic media, opening the door to quantitative analyses of time-reversal focusing in metamaterials.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":"18 9","pages":"629-640"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12196","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Time reversal exploits the invariance of electromagnetic wave propagation in reciprocal and lossless media to localize radiating sources. Time-reversed measurements are back-propagated in a simulated domain and converge to the unknown source location. The focusing time (i.e. the simulation instant at which the fields converge to the source location) and the source location can be identified using field maxima, entropy, time kurtosis, and space kurtosis. This paper analyses the spatial energy-density distribution of time-reversed electromagnetic fields by introducing a convergence metric based on the spatial average and variance of the energy density. It is analytically proven that the proposed metric identifies the focusing time and the source location, with direct links to the source frequency content. The analytical results are verified in a free-space numerical simulation and the proposed metric is then compared to existing ones in a simulated inhomogeneous medium. Next, this metric is applied and compared in an experimental case study to localize electromagnetic interference sources. The proposed metric outperforms existing ones to identify the focusing time and can also be used to locate the source. Finally, because of its tensorial nature, it can handle anisotropic media, opening the door to quantitative analyses of time-reversal focusing in metamaterials.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.