SARO-MB3-BiGRU: A novel model for short-term traffic flow forecasting in the context of big data

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Haoxu Wang, Zhiwen Wang, Long Li, Kangkang Yang, Jingxiao Zeng, Yibin Zhao, Jindou Zhang
{"title":"SARO-MB3-BiGRU: A novel model for short-term traffic flow forecasting in the context of big data","authors":"Haoxu Wang,&nbsp;Zhiwen Wang,&nbsp;Long Li,&nbsp;Kangkang Yang,&nbsp;Jingxiao Zeng,&nbsp;Yibin Zhao,&nbsp;Jindou Zhang","doi":"10.1049/itr2.12553","DOIUrl":null,"url":null,"abstract":"<p>In order to further improve the accuracy of short-term traffic flow prediction on designated sections of highways, a combined prediction model is designed in this paper to predict the traffic flow on designated sections of highways. Firstly, for the shortcomings of artificial rabbits optimization (ARO) algorithm, sine cosine ARO (SARO) is proposed by incorporating sine cosine algorithm (SCA) idea into ARO, and introducing the non-linear sinusoidal learning factor. Secondly, three mobile inverted bottleneck convolution (MBConv) modules are utilized to form the MB3 module, and with BiGRU are utilized to form the MB3-BiGRU combined prediction model. Finally, the MB3-BiGRU model is optimized by SARO to achieve short-term prediction of traffic flow. The analysis results show that using the United Kingdom highway dataset as the data source, the SARO-MB3-BiGRU presented in this paper reduces the root mean squared error (RMSE) by 32.58%, the mean absolute error (MAE) by 30.25%, and the decision coefficient (<i>R</i><sup>2</sup>) reaches 0.96729, as compared to BiGRU. Compared with other common models and algorithms, the SARO has good solving capabilities and versatility, and the SARO-MB3-BiGRU model has been greatly improved in terms of prediction accuracy and generalization ability, which has better prediction ability and engineering reference value.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 11","pages":"2097-2113"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12553","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12553","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In order to further improve the accuracy of short-term traffic flow prediction on designated sections of highways, a combined prediction model is designed in this paper to predict the traffic flow on designated sections of highways. Firstly, for the shortcomings of artificial rabbits optimization (ARO) algorithm, sine cosine ARO (SARO) is proposed by incorporating sine cosine algorithm (SCA) idea into ARO, and introducing the non-linear sinusoidal learning factor. Secondly, three mobile inverted bottleneck convolution (MBConv) modules are utilized to form the MB3 module, and with BiGRU are utilized to form the MB3-BiGRU combined prediction model. Finally, the MB3-BiGRU model is optimized by SARO to achieve short-term prediction of traffic flow. The analysis results show that using the United Kingdom highway dataset as the data source, the SARO-MB3-BiGRU presented in this paper reduces the root mean squared error (RMSE) by 32.58%, the mean absolute error (MAE) by 30.25%, and the decision coefficient (R2) reaches 0.96729, as compared to BiGRU. Compared with other common models and algorithms, the SARO has good solving capabilities and versatility, and the SARO-MB3-BiGRU model has been greatly improved in terms of prediction accuracy and generalization ability, which has better prediction ability and engineering reference value.

Abstract Image

SARO-MB3-BiGRU:大数据背景下的短期交通流预测新模型
为了进一步提高高速公路指定路段短期交通流量预测的准确性,本文设计了一种组合预测模型来预测高速公路指定路段的交通流量。首先,针对人工兔子优化算法(ARO)的缺点,将正弦余弦算法(SCA)思想融入 ARO,并引入非线性正弦学习因子,提出了正弦余弦优化算法(SARO)。其次,利用三个移动倒瓶颈卷积(MBConv)模块组成 MB3 模块,并与 BiGRU 一起组成 MB3-BiGRU 组合预测模型。最后,通过 SARO 对 MB3-BiGRU 模型进行优化,以实现交通流的短期预测。分析结果表明,以英国高速公路数据集为数据源,本文提出的 SARO-MB3-BiGRU 与 BiGRU 相比,均方根误差(RMSE)降低了 32.58%,平均绝对误差(MAE)降低了 30.25%,判定系数(R2)达到 0.96729。与其他常用模型和算法相比,SARO 具有良好的求解能力和通用性,SARO-MB3-BiGRU 模型在预测精度和泛化能力方面有了很大提高,具有更好的预测能力和工程参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信