Yuanlin Xu, Carl A. Morrow, Yassine Laksir, Orla M. Holt, Kezia Taylor, Costas Tsiappourdhi, Patrick Collins, Su Jia, Christos Andreadis, Matthew C. Whitby
{"title":"DNA nicks in both leading and lagging strand templates can trigger break-induced replication","authors":"Yuanlin Xu, Carl A. Morrow, Yassine Laksir, Orla M. Holt, Kezia Taylor, Costas Tsiappourdhi, Patrick Collins, Su Jia, Christos Andreadis, Matthew C. Whitby","doi":"10.1016/j.molcel.2024.10.026","DOIUrl":null,"url":null,"abstract":"Encounters between replication forks and unrepaired DNA single-strand breaks (SSBs) can generate both single-ended and double-ended double-strand breaks (seDSBs and deDSBs). seDSBs can be repaired by break-induced replication (BIR), which is a highly mutagenic pathway that is thought to be responsible for many of the mutations and genome rearrangements that drive cancer development. However, the frequency of BIR’s deployment and its ability to be triggered by both leading and lagging template strand SSBs were unclear. Using site- and strand-specific SSBs generated by nicking enzymes, including CRISPR-Cas9 nickase (Cas9n), we demonstrate that leading and lagging template strand SSBs in fission yeast are typically converted into deDSBs that are repaired by homologous recombination. However, both types of SSBs can also trigger BIR, and the frequency of these events increases when fork convergence is delayed and the non-homologous end joining protein Ku70 is deleted.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"248 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.10.026","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Encounters between replication forks and unrepaired DNA single-strand breaks (SSBs) can generate both single-ended and double-ended double-strand breaks (seDSBs and deDSBs). seDSBs can be repaired by break-induced replication (BIR), which is a highly mutagenic pathway that is thought to be responsible for many of the mutations and genome rearrangements that drive cancer development. However, the frequency of BIR’s deployment and its ability to be triggered by both leading and lagging template strand SSBs were unclear. Using site- and strand-specific SSBs generated by nicking enzymes, including CRISPR-Cas9 nickase (Cas9n), we demonstrate that leading and lagging template strand SSBs in fission yeast are typically converted into deDSBs that are repaired by homologous recombination. However, both types of SSBs can also trigger BIR, and the frequency of these events increases when fork convergence is delayed and the non-homologous end joining protein Ku70 is deleted.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.