Point-AGM : Attention Guided Masked Auto-Encoder for Joint Self-supervised Learning on Point Clouds

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jie Liu, Mengna Yang, Yu Tian, Yancui Li, Da Song, Kang Li, Xin Cao
{"title":"Point-AGM : Attention Guided Masked Auto-Encoder for Joint Self-supervised Learning on Point Clouds","authors":"Jie Liu,&nbsp;Mengna Yang,&nbsp;Yu Tian,&nbsp;Yancui Li,&nbsp;Da Song,&nbsp;Kang Li,&nbsp;Xin Cao","doi":"10.1111/cgf.15219","DOIUrl":null,"url":null,"abstract":"<p>Masked point modeling (MPM) has gained considerable attention in self-supervised learning for 3D point clouds. While existing self-supervised methods have progressed in learning from point clouds, we aim to address their limitation of capturing high-level semantics through our novel attention-guided masking framework, Point-AGM. Our approach introduces an attention-guided masking mechanism that selectively masks low-attended regions, enabling the model to concentrate on reconstructing more critical areas and addressing the limitations of random and block masking strategies. Furthermore, we exploit the inherent advantages of the teacher-student network to enable cross-view contrastive learning on augmented dual-view point clouds, enforcing consistency between complete and partially masked views of the same 3D shape in the feature space. This unified framework leverages the complementary strengths of masked point modeling, attention-guided masking, and contrastive learning for robust representation learning. Extensive experiments have shown the effectiveness of our approach and its well-transferable performance across various downstream tasks. Specifically, our model achieves an accuracy of 94.12% on ModelNet40 and 87.16% on the PB-T50-RS setting of ScanObjectNN, outperforming other self-supervised learning methods.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15219","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Masked point modeling (MPM) has gained considerable attention in self-supervised learning for 3D point clouds. While existing self-supervised methods have progressed in learning from point clouds, we aim to address their limitation of capturing high-level semantics through our novel attention-guided masking framework, Point-AGM. Our approach introduces an attention-guided masking mechanism that selectively masks low-attended regions, enabling the model to concentrate on reconstructing more critical areas and addressing the limitations of random and block masking strategies. Furthermore, we exploit the inherent advantages of the teacher-student network to enable cross-view contrastive learning on augmented dual-view point clouds, enforcing consistency between complete and partially masked views of the same 3D shape in the feature space. This unified framework leverages the complementary strengths of masked point modeling, attention-guided masking, and contrastive learning for robust representation learning. Extensive experiments have shown the effectiveness of our approach and its well-transferable performance across various downstream tasks. Specifically, our model achieves an accuracy of 94.12% on ModelNet40 and 87.16% on the PB-T50-RS setting of ScanObjectNN, outperforming other self-supervised learning methods.

点-AGM:用于点云联合自监督学习的注意力引导掩码自动编码器
掩蔽点建模(MPM)在三维点云的自监督学习中获得了相当大的关注。虽然现有的自监督方法在点云学习方面取得了进展,但我们的目标是通过我们新颖的注意力引导屏蔽框架 Point-AGM 解决它们在捕捉高层语义方面的局限性。我们的方法引入了一种注意力引导遮挡机制,可选择性地遮挡低注意力区域,使模型能够集中重建更关键的区域,并解决随机和块状遮挡策略的局限性。此外,我们还利用师生网络的固有优势,在增强的双视角点云上进行跨视角对比学习,确保特征空间中同一三维形状的完整视角和部分遮挡视角之间的一致性。这一统一框架充分利用了遮蔽点建模、注意力引导遮蔽和对比学习的互补优势,实现了稳健的表征学习。广泛的实验证明了我们方法的有效性及其在各种下游任务中的良好转换性能。具体来说,我们的模型在 ModelNet40 上达到了 94.12% 的准确率,在 ScanObjectNN 的 PB-T50-RS 设置上达到了 87.16%,优于其他自监督学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信