{"title":"Photon-Assisted Quantum Phase Transitions in a Cavity Optomechanical System with Two Nonlinear Mechanical Modes","authors":"Deng-Kui Jiang, Rui Zhang, Ying Liu, Le-Man Kuang","doi":"10.1002/andp.202400179","DOIUrl":null,"url":null,"abstract":"<p>Photon-assisted quantum phase transitions (QPTs) are studied in a cavity optomechanical system that consists of one optical cavity and two nonlinear mechanical resonators and explore ground-state properties of quantum phases. It is indicated that the cavity mode can induce effective two-phonon tunneling interaction between two mechanical resonators. It is found that QPTs between the localization phase (LP) and delocalization phase (DP) of phonons can happen through tuning the phonon tunneling interaction. It is shown that the photon-assisted QPT is the second order QPT. Ground-state properties of the quantum phases are also investigated. It is indicated that the ground state of the LP is a separable squeezed state while the ground state of the DP is an entangled state. The results open a new way to engineer quantum phases and QPTs in macroscopic mechanical systems and can benefit a wide range of criticality-enhanced quantum sensing applications.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400179","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photon-assisted quantum phase transitions (QPTs) are studied in a cavity optomechanical system that consists of one optical cavity and two nonlinear mechanical resonators and explore ground-state properties of quantum phases. It is indicated that the cavity mode can induce effective two-phonon tunneling interaction between two mechanical resonators. It is found that QPTs between the localization phase (LP) and delocalization phase (DP) of phonons can happen through tuning the phonon tunneling interaction. It is shown that the photon-assisted QPT is the second order QPT. Ground-state properties of the quantum phases are also investigated. It is indicated that the ground state of the LP is a separable squeezed state while the ground state of the DP is an entangled state. The results open a new way to engineer quantum phases and QPTs in macroscopic mechanical systems and can benefit a wide range of criticality-enhanced quantum sensing applications.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.