A Hybrid Parametrization Method for B-Spline Curve Interpolation via Supervised Learning

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Tianyu Song, Tong Shen, Linlin Ge, Jieqing Feng
{"title":"A Hybrid Parametrization Method for B-Spline Curve Interpolation via Supervised Learning","authors":"Tianyu Song,&nbsp;Tong Shen,&nbsp;Linlin Ge,&nbsp;Jieqing Feng","doi":"10.1111/cgf.15240","DOIUrl":null,"url":null,"abstract":"<p>B-spline curve interpolation is a fundamental algorithm in computer-aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high-quality interpolation curves generation. Various parameterization methods have been proposed. However, there is no universally satisfactory method that is applicable to data points with diverse distributions. In this work, a hybrid parametrization method is proposed to overcome the problem. For a given set of data points, a classifier via supervised learning identifies an optimal local parameterization method based on the local geometric distribution of four adjacent data points, and the optimal local parameters are computed using the selected optimal local parameterization method for the four adjacent data points. Then a merging method is employed to calculate global parameters which align closely with the local parameters. Experiments demonstrate that the proposed hybrid parameterization method well adapts the different distributions of data points statistically. The proposed method has a flexible and scalable framework, which can includes current and potential new parameterization methods as its components.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15240","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

B-spline curve interpolation is a fundamental algorithm in computer-aided geometric design. Determining suitable parameters based on data points distribution has always been an important issue for high-quality interpolation curves generation. Various parameterization methods have been proposed. However, there is no universally satisfactory method that is applicable to data points with diverse distributions. In this work, a hybrid parametrization method is proposed to overcome the problem. For a given set of data points, a classifier via supervised learning identifies an optimal local parameterization method based on the local geometric distribution of four adjacent data points, and the optimal local parameters are computed using the selected optimal local parameterization method for the four adjacent data points. Then a merging method is employed to calculate global parameters which align closely with the local parameters. Experiments demonstrate that the proposed hybrid parameterization method well adapts the different distributions of data points statistically. The proposed method has a flexible and scalable framework, which can includes current and potential new parameterization methods as its components.

通过监督学习实现 B-样条曲线插值的混合参数化方法
B 样条曲线插值是计算机辅助几何设计中的一种基本算法。根据数据点分布确定合适的参数一直是生成高质量插值曲线的重要问题。目前已提出了多种参数化方法。然而,目前还没有一种普遍满意的方法适用于具有不同分布的数据点。本研究提出了一种混合参数化方法来解决这一问题。对于一组给定的数据点,分类器通过监督学习,根据四个相邻数据点的局部几何分布确定一种最佳局部参数化方法,并利用所选的最佳局部参数化方法为四个相邻数据点计算最佳局部参数。然后采用合并方法计算出与局部参数密切配合的全局参数。实验证明,所提出的混合参数化方法能很好地在统计上适应不同的数据点分布。所提出的方法具有灵活和可扩展的框架,可以将当前和潜在的新参数化方法作为其组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信