{"title":"PCLC-Net: Point Cloud Completion in Arbitrary Poses with Learnable Canonical Space","authors":"Hanmo Xu, Qingyao Shuai, Xuejin Chen","doi":"10.1111/cgf.15217","DOIUrl":null,"url":null,"abstract":"<p>Recovering the complete structure from partial point clouds in arbitrary poses is challenging. Recently, many efforts have been made to address this problem by developing SO(3)-equivariant completion networks or aligning the partial point clouds with a predefined canonical space before completion. However, these approaches are limited to random rotations only or demand costly pose annotation for model training. In this paper, we present a novel Network for Point cloud Completion with Learnable Canonical space (PCLC-Net) to reduce the need for pose annotations and extract SE(3)-invariant geometry features to improve the completion quality in arbitrary poses. Without pose annotations, our PCLC-Net utilizes self-supervised pose estimation to align the input partial point clouds to a canonical space that is learnable for an object category and subsequently performs shape completion in the learned canonical space. Our PCLC-Net can complete partial point clouds with arbitrary SE(3) poses without requiring pose annotations for supervision. Our PCLC-Net achieves state-of-the-art results on shape completion with arbitrary SE(3) poses on both synthetic and real scanned data. To the best of our knowledge, our method is the first to achieve shape completion in arbitrary poses without pose annotations during network training.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15217","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Recovering the complete structure from partial point clouds in arbitrary poses is challenging. Recently, many efforts have been made to address this problem by developing SO(3)-equivariant completion networks or aligning the partial point clouds with a predefined canonical space before completion. However, these approaches are limited to random rotations only or demand costly pose annotation for model training. In this paper, we present a novel Network for Point cloud Completion with Learnable Canonical space (PCLC-Net) to reduce the need for pose annotations and extract SE(3)-invariant geometry features to improve the completion quality in arbitrary poses. Without pose annotations, our PCLC-Net utilizes self-supervised pose estimation to align the input partial point clouds to a canonical space that is learnable for an object category and subsequently performs shape completion in the learned canonical space. Our PCLC-Net can complete partial point clouds with arbitrary SE(3) poses without requiring pose annotations for supervision. Our PCLC-Net achieves state-of-the-art results on shape completion with arbitrary SE(3) poses on both synthetic and real scanned data. To the best of our knowledge, our method is the first to achieve shape completion in arbitrary poses without pose annotations during network training.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.