{"title":"Construction of PtAg-on-Au Heterostructured Nanoplates for Improved Electrocatalytic Activity of Formic Acid Oxidation","authors":"Quansen Wu, Yuanyuan Min, Yingying Wang, Yanyun Ma, Yiqun Zheng","doi":"10.1002/cnma.202400399","DOIUrl":null,"url":null,"abstract":"<p>Direct formic acid fuel cells have attracted significant attention due to their low fuel crossover, high safety, and high theoretical power density among all proton-exchange membrane fuel cells. Numerous efforts have been dedicated to studying formic acid oxidation, particularly in the fabrication of high-performance electrocatalysts with economical utilization of Pt metal. In this work, we report a synthetic strategy to create PtAg dots supported on plate-like Au nanoparticles and explore their applications in electrocatalytic formic acid oxidation. The highly dispersed nature of the catalytic Pt centers and the successful construction of PtAg−Au trimetallic interfaces makes the current nanostructure an ideal system to allow for a synergetic effect between Pt, Au, and Ag, leading to improved electrocatalysis. Compared with commercial Pt/C, our PtAg-on-Au heterogenous nanoplates exhibit superior mass activity, along with enhanced reaction kinetics and long-term durability for FAOR in an acidic medium. Density functional theory (DFT) simulation results indicate that AgPtAu(111) exhibits a relatively high activity for HCOOH oxidation into CO<sub>2</sub> among the various Au-based catalysts. This work provides a viable strategy for constructing Pt-based electrocatalysts with controlled Pt ensembles, offering insights into the development of fuel cell catalysts that make highly efficient use of costly noble metals.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400399","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Direct formic acid fuel cells have attracted significant attention due to their low fuel crossover, high safety, and high theoretical power density among all proton-exchange membrane fuel cells. Numerous efforts have been dedicated to studying formic acid oxidation, particularly in the fabrication of high-performance electrocatalysts with economical utilization of Pt metal. In this work, we report a synthetic strategy to create PtAg dots supported on plate-like Au nanoparticles and explore their applications in electrocatalytic formic acid oxidation. The highly dispersed nature of the catalytic Pt centers and the successful construction of PtAg−Au trimetallic interfaces makes the current nanostructure an ideal system to allow for a synergetic effect between Pt, Au, and Ag, leading to improved electrocatalysis. Compared with commercial Pt/C, our PtAg-on-Au heterogenous nanoplates exhibit superior mass activity, along with enhanced reaction kinetics and long-term durability for FAOR in an acidic medium. Density functional theory (DFT) simulation results indicate that AgPtAu(111) exhibits a relatively high activity for HCOOH oxidation into CO2 among the various Au-based catalysts. This work provides a viable strategy for constructing Pt-based electrocatalysts with controlled Pt ensembles, offering insights into the development of fuel cell catalysts that make highly efficient use of costly noble metals.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.