Juan Raúl Padrón-Griffe, Dario Lanza, Adrián Jarabo, Adolfo Muñoz
{"title":"A Surface-based Appearance Model for Pennaceous Feathers","authors":"Juan Raúl Padrón-Griffe, Dario Lanza, Adrián Jarabo, Adolfo Muñoz","doi":"10.1111/cgf.15235","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The appearance of a real-world feather results from the complex interaction of light with its multi-scale biological structure, including the central shaft, branching barbs, and interlocking barbules on those barbs. In this work, we propose a practical surface-based appearance model for feathers. We represent the far-field appearance of feathers using a BSDF that implicitly represents the light scattering from the main biological structures of a feather, such as the shaft, barb and barbules. Our model accounts for the particular characteristics of feather barbs such as the non-cylindrical cross-sections and the scattering media via a numerically-based BCSDF. To model the relative visibility between barbs and barbules, we derive a masking term for the differential projected areas of the different components of the feather's microgeometry, which allows us to analytically compute the masking between barbs and barbules. As opposed to previous works, our model uses a lightweight representation of the geometry based on a 2D texture, and does not require explicitly representing the barbs as curves. We show the flexibility and potential of our appearance model approach to represent the most important visual features of several pennaceous feathers.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15235","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15235","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The appearance of a real-world feather results from the complex interaction of light with its multi-scale biological structure, including the central shaft, branching barbs, and interlocking barbules on those barbs. In this work, we propose a practical surface-based appearance model for feathers. We represent the far-field appearance of feathers using a BSDF that implicitly represents the light scattering from the main biological structures of a feather, such as the shaft, barb and barbules. Our model accounts for the particular characteristics of feather barbs such as the non-cylindrical cross-sections and the scattering media via a numerically-based BCSDF. To model the relative visibility between barbs and barbules, we derive a masking term for the differential projected areas of the different components of the feather's microgeometry, which allows us to analytically compute the masking between barbs and barbules. As opposed to previous works, our model uses a lightweight representation of the geometry based on a 2D texture, and does not require explicitly representing the barbs as curves. We show the flexibility and potential of our appearance model approach to represent the most important visual features of several pennaceous feathers.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.