Strictly Conservative Neural Implicits

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
I. Ludwig, M. Campen
{"title":"Strictly Conservative Neural Implicits","authors":"I. Ludwig,&nbsp;M. Campen","doi":"10.1111/cgf.15241","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We describe a method to convert 3D shapes into neural implicit form such that the shape is approximated in a guaranteed conservative manner. This means the input shape is strictly contained inside the neural implicit or, alternatively, vice versa. Such conservative approximations are of interest in a variety of applications, including collision detection, occlusion culling, or intersection testing. Our approach is the first to guarantee conservativeness in this context of neural implicits. We support input given as mesh, voxel set, or implicit function. Adaptive affine arithmetic is employed in the neural network fitting process, enabling the reasoning over infinite sets of points despite using a finite set of training data. Combined with an interior point style optimization approach this yields the desired guarantee.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15241","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15241","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a method to convert 3D shapes into neural implicit form such that the shape is approximated in a guaranteed conservative manner. This means the input shape is strictly contained inside the neural implicit or, alternatively, vice versa. Such conservative approximations are of interest in a variety of applications, including collision detection, occlusion culling, or intersection testing. Our approach is the first to guarantee conservativeness in this context of neural implicits. We support input given as mesh, voxel set, or implicit function. Adaptive affine arithmetic is employed in the neural network fitting process, enabling the reasoning over infinite sets of points despite using a finite set of training data. Combined with an interior point style optimization approach this yields the desired guarantee.

Abstract Image

严格保守的神经暗示
我们介绍了一种将三维形状转换为神经隐式的方法,这种方法可以保证以保守的方式近似形状。这意味着输入形状严格包含在神经隐式中,反之亦然。这种保守的近似在碰撞检测、遮挡剔除或交叉测试等多种应用中都很有意义。我们的方法是第一种保证神经隐含式的保守性的方法。我们支持网格、体素集或隐函数输入。在神经网络拟合过程中采用了自适应仿射算法,尽管使用的是有限的训练数据集,却能对无限的点集进行推理。结合内点式优化方法,可获得所需的保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信