{"title":"LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud","authors":"Zijian Xiao, Tianchen Zhou, Li Yao","doi":"10.1111/cgf.15257","DOIUrl":null,"url":null,"abstract":"<p>We introduce LGSur-Net, an end-to-end deep learning architecture, engineered for the upsampling of sparse point clouds. LGSur-Net harnesses a trainable Gaussian local representation by positioning a series of Gaussian functions on an oriented plane, complemented by the optimization of individual covariance matrices. The integration of parametric factors allows for the encoding of the plane's rotational dynamics and Gaussian weightings into a linear transformation matrix. Then we extract the feature maps from the point cloud and its adjoining edges and learn the local Gaussian depictions to accurately model the shape's local geometry through an attention-based network. The Gaussian representation's inherent high-order continuity endows LGSur-Net with the natural ability to predict surface normals and support upsampling to any specified resolution. Comprehensive experiments validate that LGSur-Net efficiently learns from sparse data inputs, surpassing the performance of existing state-of-the-art upsampling methods. Our code is publicly available at https://github.com/Rangiant5b72/LGSur-Net.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15257","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce LGSur-Net, an end-to-end deep learning architecture, engineered for the upsampling of sparse point clouds. LGSur-Net harnesses a trainable Gaussian local representation by positioning a series of Gaussian functions on an oriented plane, complemented by the optimization of individual covariance matrices. The integration of parametric factors allows for the encoding of the plane's rotational dynamics and Gaussian weightings into a linear transformation matrix. Then we extract the feature maps from the point cloud and its adjoining edges and learn the local Gaussian depictions to accurately model the shape's local geometry through an attention-based network. The Gaussian representation's inherent high-order continuity endows LGSur-Net with the natural ability to predict surface normals and support upsampling to any specified resolution. Comprehensive experiments validate that LGSur-Net efficiently learns from sparse data inputs, surpassing the performance of existing state-of-the-art upsampling methods. Our code is publicly available at https://github.com/Rangiant5b72/LGSur-Net.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.