Leandro Suarez , Maricarmen Guerra , Megan E. Williams , Cristián Escauriaza , Iossif Lozovatsky , Ronald Coppersmith , Harindra Joseph S. Fernando
{"title":"Flow characterization and turbulence in the eastern section of the Strait of Magellan, Southern Chile","authors":"Leandro Suarez , Maricarmen Guerra , Megan E. Williams , Cristián Escauriaza , Iossif Lozovatsky , Ronald Coppersmith , Harindra Joseph S. Fernando","doi":"10.1016/j.csr.2024.105344","DOIUrl":null,"url":null,"abstract":"<div><div>The Strait of Magellan connects the Pacific and Atlantic oceans in South America’s southern region, and it has been recognized for centuries as an important transoceanic navigation route as well as a unique marine environment with a rich ecological diversity. Evaluations of the impact of human activities in the channel and multiple potential future developments require a better understanding of the physical environment to design sustainable strategies aimed at preserving these characteristics. In this investigation, we study the flow near the Atlantic inlet of the Strait where the dynamics is characterized by the interactions of the tide propagation within two narrows, which are the predominant features of the channel morphology. Tides amplified by the Patagonian shelf generate strong currents through these narrows and control the exchange between the Atlantic and central regions of the Strait. We employ bottom-mounted and vessel-mounted Acoustic Doppler Current Profilers (ADCPs) with tide gauges to analyze the mean flow, tidal propagation, and turbulence, complementing the data with previous available measurements. The analysis reveals residual flows directed toward ebb flow at the channel center and flood near the edges, showing a significant spring-neap variation. Turbulence statistics in the second narrows exhibit a significant variability between ebb and flood, with a balance between production and dissipation observed only during ebb phases.</div></div>","PeriodicalId":50618,"journal":{"name":"Continental Shelf Research","volume":"283 ","pages":"Article 105344"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continental Shelf Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278434324001742","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The Strait of Magellan connects the Pacific and Atlantic oceans in South America’s southern region, and it has been recognized for centuries as an important transoceanic navigation route as well as a unique marine environment with a rich ecological diversity. Evaluations of the impact of human activities in the channel and multiple potential future developments require a better understanding of the physical environment to design sustainable strategies aimed at preserving these characteristics. In this investigation, we study the flow near the Atlantic inlet of the Strait where the dynamics is characterized by the interactions of the tide propagation within two narrows, which are the predominant features of the channel morphology. Tides amplified by the Patagonian shelf generate strong currents through these narrows and control the exchange between the Atlantic and central regions of the Strait. We employ bottom-mounted and vessel-mounted Acoustic Doppler Current Profilers (ADCPs) with tide gauges to analyze the mean flow, tidal propagation, and turbulence, complementing the data with previous available measurements. The analysis reveals residual flows directed toward ebb flow at the channel center and flood near the edges, showing a significant spring-neap variation. Turbulence statistics in the second narrows exhibit a significant variability between ebb and flood, with a balance between production and dissipation observed only during ebb phases.
期刊介绍:
Continental Shelf Research publishes articles dealing with the biological, chemical, geological and physical oceanography of the shallow marine environment, from coastal and estuarine waters out to the shelf break. The continental shelf is a critical environment within the land-ocean continuum, and many processes, functions and problems in the continental shelf are driven by terrestrial inputs transported through the rivers and estuaries to the coastal and continental shelf areas. Manuscripts that deal with these topics must make a clear link to the continental shelf. Examples of research areas include:
Physical sedimentology and geomorphology
Geochemistry of the coastal ocean (inorganic and organic)
Marine environment and anthropogenic effects
Interaction of physical dynamics with natural and manmade shoreline features
Benthic, phytoplankton and zooplankton ecology
Coastal water and sediment quality, and ecosystem health
Benthic-pelagic coupling (physical and biogeochemical)
Interactions between physical dynamics (waves, currents, mixing, etc.) and biogeochemical cycles
Estuarine, coastal and shelf sea modelling and process studies.