Reinier J. Goudswaard, Daniele Ragni, Woutijn J. Baars
{"title":"Effects of the rotor tip gap on the aerodynamic and aeroacoustic performance of a ducted rotor in hover","authors":"Reinier J. Goudswaard, Daniele Ragni, Woutijn J. Baars","doi":"10.1016/j.ast.2024.109734","DOIUrl":null,"url":null,"abstract":"<div><div>Ducted rotors are configurations known to outperform their unducted reference baselines when aerodynamic performance is concerned. Aside from aerodynamic benefits in hover, a duct also affects acoustic emissions. One of the most contended design parameters of a duct-rotor assembly is the radial distance between the blade tip and the duct wall, referred to as the “tip gap”. The present study explains how the aerodynamic performance of a ducted-rotor system is affected by the tip-gap distance, taking into account the performance of the rotor and those of the duct's inlet lip and diffuser sections. Separate thrust measurements of the rotor and duct establish that the latter can generate up to half of the total thrust of the assembly. Static wall-pressure measurements along the inner wall of the duct reveal a low pressure suction zone over the duct's inlet lip area. This allows the assembly to generate more thrust than the rotor alone, even though the duct's diffuser section generates a drag component (negative thrust). From the velocity fields it is further shown that the performance-deterioration with an increasing tip gap distance is associated with a contraction of the rotor slipstream in the duct diffuser.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109734"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008630","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Ducted rotors are configurations known to outperform their unducted reference baselines when aerodynamic performance is concerned. Aside from aerodynamic benefits in hover, a duct also affects acoustic emissions. One of the most contended design parameters of a duct-rotor assembly is the radial distance between the blade tip and the duct wall, referred to as the “tip gap”. The present study explains how the aerodynamic performance of a ducted-rotor system is affected by the tip-gap distance, taking into account the performance of the rotor and those of the duct's inlet lip and diffuser sections. Separate thrust measurements of the rotor and duct establish that the latter can generate up to half of the total thrust of the assembly. Static wall-pressure measurements along the inner wall of the duct reveal a low pressure suction zone over the duct's inlet lip area. This allows the assembly to generate more thrust than the rotor alone, even though the duct's diffuser section generates a drag component (negative thrust). From the velocity fields it is further shown that the performance-deterioration with an increasing tip gap distance is associated with a contraction of the rotor slipstream in the duct diffuser.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.