Jun Liu , Jinsheng Zhang , Zhengxu Hua , Keyu Zhou , Huacheng Yuan
{"title":"Multi-fidelity simulation of inlet mode transition with smooth thrust of turbine based combined cycle","authors":"Jun Liu , Jinsheng Zhang , Zhengxu Hua , Keyu Zhou , Huacheng Yuan","doi":"10.1016/j.ast.2024.109710","DOIUrl":null,"url":null,"abstract":"<div><div>A multi-fidelity simulation method of external and internal flow has been developed using commercial software to achieve a smooth thrust of the turbine-based combined-cycle (TBCC) propulsion system. This platform enables the investigation of the flow field and performance of the TBCC propulsion system at different mode transition schemes. The integrated multi-fidelity simulation includes the inlet, turbojet engine, ramjet engine, and nozzle, providing insights into the operation process of the TBCC propulsion system during the transition from turbojet mode to ramjet mode. Three mode transition schemes are proposed: critical mode transition, constant aerodynamic interface plane (AIP) Mach number mode transition, and linear mode transition. From the perspective of TBCC inlet, the performance of the critical mode transition exhibits the best performance among these mode transition schemes, while the linear mode transition performs the worst. However, from the viewpoint of the TBCC propulsion system and the hypersonic vehicle, the performance of constant AIP Mach number mode transition is the best. The non-dimensional thrust increases almost linear from 1.0 to 1.2, enabling hypersonic vehicle to accelerate steadily during the transition from turbojet mode to ramjet mode.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109710"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008393","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-fidelity simulation method of external and internal flow has been developed using commercial software to achieve a smooth thrust of the turbine-based combined-cycle (TBCC) propulsion system. This platform enables the investigation of the flow field and performance of the TBCC propulsion system at different mode transition schemes. The integrated multi-fidelity simulation includes the inlet, turbojet engine, ramjet engine, and nozzle, providing insights into the operation process of the TBCC propulsion system during the transition from turbojet mode to ramjet mode. Three mode transition schemes are proposed: critical mode transition, constant aerodynamic interface plane (AIP) Mach number mode transition, and linear mode transition. From the perspective of TBCC inlet, the performance of the critical mode transition exhibits the best performance among these mode transition schemes, while the linear mode transition performs the worst. However, from the viewpoint of the TBCC propulsion system and the hypersonic vehicle, the performance of constant AIP Mach number mode transition is the best. The non-dimensional thrust increases almost linear from 1.0 to 1.2, enabling hypersonic vehicle to accelerate steadily during the transition from turbojet mode to ramjet mode.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.