{"title":"Quasi-static compression response of a novel multi-step auxetic honeycomb with tunable transition strain","authors":"Shun Wang , Hai-Tao Liu","doi":"10.1016/j.ast.2024.109730","DOIUrl":null,"url":null,"abstract":"<div><div>Auxetic honeycombs with multi-step deformation have received widespread attention due to their multifunctionality and superior mechanical properties. To improve the tunability of the auxetic honeycomb, a novel multi-step auxetic honeycomb (MSAH) is proposed by combining star-rhombic parts with crossed thin walls. MASH is characterized by multi-step deformation, and its stress-strain curve has three significant plateau stages. The strain during the transition between different deformation steps can be adjusted by designing unit cells with different geometrical parameters. In the compression process, the ordered contact of the cell walls of MASH is the critical reason for realizing the multi-step deformation. The quasi-static compression finite element model of MASH is established and verified by experiments. Quasi-static compression response and deformation mechanism of MASH are studied. Then, the effects of geometrical parameters on the compression response of MASH are investigated. The results show that the wall thickness has a greater effect on the compressive stress, and the cell-wall angle determines the deformation mode of MASH. Furthermore, the transition strain of MASH is theoretically analyzed and verified by numerical simulations. This study provides a reference for designing multi-step deformation honeycombs and applying multi-stage energy absorbers.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109730"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008599","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Auxetic honeycombs with multi-step deformation have received widespread attention due to their multifunctionality and superior mechanical properties. To improve the tunability of the auxetic honeycomb, a novel multi-step auxetic honeycomb (MSAH) is proposed by combining star-rhombic parts with crossed thin walls. MASH is characterized by multi-step deformation, and its stress-strain curve has three significant plateau stages. The strain during the transition between different deformation steps can be adjusted by designing unit cells with different geometrical parameters. In the compression process, the ordered contact of the cell walls of MASH is the critical reason for realizing the multi-step deformation. The quasi-static compression finite element model of MASH is established and verified by experiments. Quasi-static compression response and deformation mechanism of MASH are studied. Then, the effects of geometrical parameters on the compression response of MASH are investigated. The results show that the wall thickness has a greater effect on the compressive stress, and the cell-wall angle determines the deformation mode of MASH. Furthermore, the transition strain of MASH is theoretically analyzed and verified by numerical simulations. This study provides a reference for designing multi-step deformation honeycombs and applying multi-stage energy absorbers.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.