Effect of rare earth doping on structural, morphological, optical, and magnetic properties of the Y1-x(Gd, Dy)xBaCuFeO5 (x = 0.2, 0.4, 0.6, and 0.8) ceramics
I.M. Saavedra Gaona , C.F. Camargo Castillo , J.E. Duarte , J. Roa-Rojas , D.A. Landínez Téllez , J. Munevar , C.A. Parra Vargas
{"title":"Effect of rare earth doping on structural, morphological, optical, and magnetic properties of the Y1-x(Gd, Dy)xBaCuFeO5 (x = 0.2, 0.4, 0.6, and 0.8) ceramics","authors":"I.M. Saavedra Gaona , C.F. Camargo Castillo , J.E. Duarte , J. Roa-Rojas , D.A. Landínez Téllez , J. Munevar , C.A. Parra Vargas","doi":"10.1016/j.ssc.2024.115750","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of the rare earth (RE) ion substitution on the structural, morphological, optical and magnetic properties of the Y<sub>1-<em>x</em></sub>RE<sub><em>x</em></sub>BaCuFeO<sub>5</sub> (RE = Gd, Dy; <em>x</em> = 0.2, 0.4, 0.6, and 0.8) multiferroic compounds grown by the solid-state reaction is evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX), reflectance spectroscopy techniques diffuse (UV–vis–NIR) and vibrating sample magnetometry (VSM). The results indicate that the RE substitution led to growth of single-phase materials, with a tetragonal structure and <em>P</em>4<em>mm</em> symmetry. The morphological analysis shows the formation of polycrystalline materials composed of grains of various shapes and sizes. Furthermore, the compositional analysis reveals that the materials do not present elements other than those used in the synthesis. The band gap (E<sub><em>g</em></sub>) is tuned from 0.88 to 0.90 eV upon RE substitution. The magnetization curves obtained in the Zero-Field-Cooled/Field-Cooled (ZFC-FC) modes between 50 and 390 K, reveal a paramagnetic behavior, which could be attributed to the dominance exerted by the magnetic moments of the Gd/Dy ions.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115750"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003272","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of the rare earth (RE) ion substitution on the structural, morphological, optical and magnetic properties of the Y1-xRExBaCuFeO5 (RE = Gd, Dy; x = 0.2, 0.4, 0.6, and 0.8) multiferroic compounds grown by the solid-state reaction is evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX), reflectance spectroscopy techniques diffuse (UV–vis–NIR) and vibrating sample magnetometry (VSM). The results indicate that the RE substitution led to growth of single-phase materials, with a tetragonal structure and P4mm symmetry. The morphological analysis shows the formation of polycrystalline materials composed of grains of various shapes and sizes. Furthermore, the compositional analysis reveals that the materials do not present elements other than those used in the synthesis. The band gap (Eg) is tuned from 0.88 to 0.90 eV upon RE substitution. The magnetization curves obtained in the Zero-Field-Cooled/Field-Cooled (ZFC-FC) modes between 50 and 390 K, reveal a paramagnetic behavior, which could be attributed to the dominance exerted by the magnetic moments of the Gd/Dy ions.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.