{"title":"Combining thresholded real values for designing an artificial neuron in a neural network","authors":"Olivier Strauss , Agnès Rico , Jérôme Pasquet , Lionel Pibre","doi":"10.1016/j.fss.2024.109191","DOIUrl":null,"url":null,"abstract":"<div><div>This study emanates from a simple observation: as specified by Vapnik <span><span>[37]</span></span> in his study, an artificial neural network cannot generate a universal approximator if the aggregation function chosen to design the artificial neuron does not include non-linearity. The usual option is to follow a linear aggregation by a non-linear function, or so-called activation function. We wonder if this approach could be replaced by one using a natively non-linear aggregation function.</div><div>Among all of the available non-linear aggregation functions, here we are interested in aggregations based on weighted minimum and weighted maximum operations <span><span>[8]</span></span>. As these operators were originally developed within a possibility theory and fuzzy rule framework, such operators cannot be easily integrated into a neural network because the values that are usually considered belong to <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. For gradient descent based learning, a neuron must be an aggregation function derivable with respect to its inputs and synaptic weights, whose variables (synaptic weights, inputs and outputs) must all be signed real values. We thus propose an extension of weighted maximum based aggregation to enable this learning process. We show that such an aggregation can be seen as a combination of four Sugeno integrals. Finally, we compare this type of approach with the classical one.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"499 ","pages":"Article 109191"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424003373","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study emanates from a simple observation: as specified by Vapnik [37] in his study, an artificial neural network cannot generate a universal approximator if the aggregation function chosen to design the artificial neuron does not include non-linearity. The usual option is to follow a linear aggregation by a non-linear function, or so-called activation function. We wonder if this approach could be replaced by one using a natively non-linear aggregation function.
Among all of the available non-linear aggregation functions, here we are interested in aggregations based on weighted minimum and weighted maximum operations [8]. As these operators were originally developed within a possibility theory and fuzzy rule framework, such operators cannot be easily integrated into a neural network because the values that are usually considered belong to . For gradient descent based learning, a neuron must be an aggregation function derivable with respect to its inputs and synaptic weights, whose variables (synaptic weights, inputs and outputs) must all be signed real values. We thus propose an extension of weighted maximum based aggregation to enable this learning process. We show that such an aggregation can be seen as a combination of four Sugeno integrals. Finally, we compare this type of approach with the classical one.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.