Antonio Cimino , Francesco Longo , Letizia Nicoletti , Vittorio Solina
{"title":"Simulation-based Digital Twin for enhancing human-robot collaboration in assembly systems","authors":"Antonio Cimino , Francesco Longo , Letizia Nicoletti , Vittorio Solina","doi":"10.1016/j.jmsy.2024.10.024","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of new technologies and paradigms such as the Internet of Things (IoTs), Digital Twin (DT), Human-Robot Collaboration (HRC), is offering immense opportunities to improve the performance of manufacturing systems, but also opening new challenges. The current scientific literature highlights the presence of numerous theoretical studies, but limited real-life applications, and the need to address interoperability issues, with the aim of valorizing the data continuously generated by humans, robots, machines. This research presents a novel simulation-based DT, designed for supporting HRC optimization in assembly systems. The proposed approach is tested and validated, through a case study in the automotive sector, specifically focusing on an assembly line for car front doors. The results show that it is possible to achieve HRC improvements through the assessment of different working configurations. Furthermore, it is explained how the simulation-based DT, by leveraging the FIWARE/FIROS paradigm, can effectively and efficiently interact with other systems, to enable real-time data exchange, which is nowadays one of the main open research challenges.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"77 ","pages":"Pages 903-918"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002504","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of new technologies and paradigms such as the Internet of Things (IoTs), Digital Twin (DT), Human-Robot Collaboration (HRC), is offering immense opportunities to improve the performance of manufacturing systems, but also opening new challenges. The current scientific literature highlights the presence of numerous theoretical studies, but limited real-life applications, and the need to address interoperability issues, with the aim of valorizing the data continuously generated by humans, robots, machines. This research presents a novel simulation-based DT, designed for supporting HRC optimization in assembly systems. The proposed approach is tested and validated, through a case study in the automotive sector, specifically focusing on an assembly line for car front doors. The results show that it is possible to achieve HRC improvements through the assessment of different working configurations. Furthermore, it is explained how the simulation-based DT, by leveraging the FIWARE/FIROS paradigm, can effectively and efficiently interact with other systems, to enable real-time data exchange, which is nowadays one of the main open research challenges.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.