A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury

Q1 Medicine
Yasmin Roye , Carmen Miller , Titilola D. Kalejaiye , Samira Musah
{"title":"A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury","authors":"Yasmin Roye ,&nbsp;Carmen Miller ,&nbsp;Titilola D. Kalejaiye ,&nbsp;Samira Musah","doi":"10.1016/j.mbplus.2024.100164","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic nephropathy results from chronic (or uncontrolled) hyperglycemia and is the leading cause of kidney failure. The kidney’s glomerular podocytes are highly susceptible to diabetic injury and subsequent non-reversible degeneration. We generated a human induced pluripotent stem (iPS) cell-derived model of diabetic podocytopathy to investigate disease pathogenesis and progression. The model recapitulated hallmarks of podocytopathy that precede proteinuria including retraction of foot processes and podocytopenia (detachment from the extracellular matrix (ECM)). Moreover, hyperglycemia-induced injury to podocytes exacerbated remodeling of the ECM. Specifically, mature podocytes aberrantly increased expression and excessively deposited collagen (IV)α1α1α2 that is normally abundant in the embryonic glomerulus. This collagen (IV) imbalance coincided with dysregulation of lineage-specific proteins, structural abnormalities of the ECM, and podocytopenia – a mechanism not shared with endothelium and is distinct from drug-induced injury. Intriguingly, repopulation of hyperglycemia-injured podocytes on decellularized ECM scaffolds isolated from healthy podocytes attenuated the loss of synaptopodin (a mechanosensitive protein associated with podocyte health). These results demonstrate that human iPS cell-derived podocytes can facilitate <em>in vitro</em> studies to uncover the mechanisms of chronic hyperglycemia and ECM remodeling and guide disease target identification.</div></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"24 ","pages":"Article 100164"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590028524000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic nephropathy results from chronic (or uncontrolled) hyperglycemia and is the leading cause of kidney failure. The kidney’s glomerular podocytes are highly susceptible to diabetic injury and subsequent non-reversible degeneration. We generated a human induced pluripotent stem (iPS) cell-derived model of diabetic podocytopathy to investigate disease pathogenesis and progression. The model recapitulated hallmarks of podocytopathy that precede proteinuria including retraction of foot processes and podocytopenia (detachment from the extracellular matrix (ECM)). Moreover, hyperglycemia-induced injury to podocytes exacerbated remodeling of the ECM. Specifically, mature podocytes aberrantly increased expression and excessively deposited collagen (IV)α1α1α2 that is normally abundant in the embryonic glomerulus. This collagen (IV) imbalance coincided with dysregulation of lineage-specific proteins, structural abnormalities of the ECM, and podocytopenia – a mechanism not shared with endothelium and is distinct from drug-induced injury. Intriguingly, repopulation of hyperglycemia-injured podocytes on decellularized ECM scaffolds isolated from healthy podocytes attenuated the loss of synaptopodin (a mechanosensitive protein associated with podocyte health). These results demonstrate that human iPS cell-derived podocytes can facilitate in vitro studies to uncover the mechanisms of chronic hyperglycemia and ECM remodeling and guide disease target identification.
人类干细胞衍生模型揭示了糖尿病荚膜细胞损伤中细胞外基质的病理性重塑
糖尿病肾病是由慢性(或失控)高血糖引起的,是导致肾衰竭的主要原因。肾脏的肾小球荚膜细胞极易受到糖尿病损伤和随后的不可逆变性。我们建立了一个人类诱导多能干细胞(iPS)衍生的糖尿病荚膜细胞病变模型,以研究疾病的发病机制和进展。该模型再现了蛋白尿之前荚膜细胞病变的特征,包括足突回缩和荚膜细胞减少(脱离细胞外基质(ECM))。此外,高血糖诱发的荚膜细胞损伤加剧了细胞外基质的重塑。具体来说,成熟的荚膜细胞异常增加了胶原蛋白 (IV)α1α1α2 的表达并过度沉积,而胚胎肾小球中通常含有大量胶原蛋白 (IV)。这种胶原蛋白(IV)失衡与细胞系特异性蛋白失调、ECM 结构异常和荚膜细胞减少同时发生,这种机制与内皮细胞不同,也不同于药物诱导的损伤。有趣的是,将高血糖损伤的荚膜细胞重新填充到从健康荚膜细胞分离出来的脱细胞 ECM 支架上,可减少突触蛋白(一种与荚膜细胞健康有关的机械敏感蛋白)的损失。这些结果表明,人类 iPS 细胞衍生的荚膜细胞可促进体外研究,揭示慢性高血糖和 ECM 重塑的机制,并指导疾病靶点的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matrix Biology Plus
Matrix Biology Plus Medicine-Histology
CiteScore
9.00
自引率
0.00%
发文量
25
审稿时长
105 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信