I.Z. Al-Yahmadi, A. Gismelseed, H.M. Widatallah, F. Bzour, F. Al Ma'Mari, A. Al-Rawas, M. ElZain
{"title":"Enhancement of the magnetocaloric effect in Nd0.6-xGdxSr0.4MnO3 (0.02 ≤ x ≤ 0.1) perovskite manganites: The role of Gd3+ ionic substitution","authors":"I.Z. Al-Yahmadi, A. Gismelseed, H.M. Widatallah, F. Bzour, F. Al Ma'Mari, A. Al-Rawas, M. ElZain","doi":"10.1016/j.matchemphys.2024.130109","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of Gd<sup>3+</sup> doping on the magnetocaloric properties of Nd<sub>0.6-<em>x</em></sub>Gd<sub><em>x</em></sub>Sr<sub>0.4</sub>MnO<sub>3</sub> (0.02 ≤ <em>x</em> ≤ 0.1) compounds, prepared using auto-combustion sol-gel technique, has been studied. Rietveld refinement of the X-ray diffraction (XRD) data has shown all compounds to be nanocrystalline with single-phased orthorhombic structures that index to the <em>Pnma</em> space group. The unit cell volumes reduce as the Gd<sup>3+</sup> ions gradually substitute the Nd<sup>3+</sup>ones. The tuning Mn<sup>4+</sup>/Mn<sup>3+</sup> ratio for all compounds, which are slightly lower than that of the Gd-free compound, demonstrates almost equal amounts of both ions. A ferromagnetic-to-paramagnetic transition is observed with rising temperature wherein the Curie temperature (T<sub>C</sub>) gradually drops with increasing Gd<sup>3+</sup> concentration (<em>x</em>). All materials exhibit ferromagnetism at 2 K, with saturation magnetization values that increase slightly with <em>x</em>. Both the calculated maximum magnetic entropies (<span><math><mrow><mo>|</mo><mrow><mo>Δ</mo><msubsup><mi>S</mi><mi>M</mi><mi>Max</mi></msubsup></mrow><mo>|</mo></mrow></math></span>) and relative cooling powers (RCP) increase to relatively large values with increasing temperature and <em>x</em> values. The values obtained for <span><math><mrow><mo>|</mo><mrow><mo>Δ</mo><msubsup><mi>S</mi><mi>M</mi><mi>Max</mi></msubsup></mrow><mo>|</mo></mrow></math></span> and RCP for Nd<sub>0.6-<em>x</em></sub>Gd<sub><em>x</em></sub>Sr<sub>0.4</sub>MnO<sub>3</sub> (0.02 ≤ <em>x</em> ≤ 0.1) are comparable with those of standard pure Gd revealing their potential as magnetic refrigeration systems.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130109"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012379","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of Gd3+ doping on the magnetocaloric properties of Nd0.6-xGdxSr0.4MnO3 (0.02 ≤ x ≤ 0.1) compounds, prepared using auto-combustion sol-gel technique, has been studied. Rietveld refinement of the X-ray diffraction (XRD) data has shown all compounds to be nanocrystalline with single-phased orthorhombic structures that index to the Pnma space group. The unit cell volumes reduce as the Gd3+ ions gradually substitute the Nd3+ones. The tuning Mn4+/Mn3+ ratio for all compounds, which are slightly lower than that of the Gd-free compound, demonstrates almost equal amounts of both ions. A ferromagnetic-to-paramagnetic transition is observed with rising temperature wherein the Curie temperature (TC) gradually drops with increasing Gd3+ concentration (x). All materials exhibit ferromagnetism at 2 K, with saturation magnetization values that increase slightly with x. Both the calculated maximum magnetic entropies () and relative cooling powers (RCP) increase to relatively large values with increasing temperature and x values. The values obtained for and RCP for Nd0.6-xGdxSr0.4MnO3 (0.02 ≤ x ≤ 0.1) are comparable with those of standard pure Gd revealing their potential as magnetic refrigeration systems.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.