Numerical simulation of gas tungsten arc welding for ZW61 magnesium alloy thin plates

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weiyang Zhou , Qichi Le , Ye Shi , Qiyu Liao , Zhaoyang Yin , Yanchao Jiang
{"title":"Numerical simulation of gas tungsten arc welding for ZW61 magnesium alloy thin plates","authors":"Weiyang Zhou ,&nbsp;Qichi Le ,&nbsp;Ye Shi ,&nbsp;Qiyu Liao ,&nbsp;Zhaoyang Yin ,&nbsp;Yanchao Jiang","doi":"10.1016/j.matchemphys.2024.130130","DOIUrl":null,"url":null,"abstract":"<div><div>Mg–Zn–Y alloy has become the favorite of magnesium alloy research due to its excellent comprehensive performance and increasingly mature deformation process. For the gas tungsten arc welding (GTAW) process of ZW61 magnesium alloy thin plates, the physical field and microstructure evolution is simulated with the finite volume method and the cellular automata (CA) method in this paper. The flow field results show that the Marangoni force dominates the flow of liquid metal in the molten pool from the center of the molten pool to the edge of the molten pool. The increase in welding speed significantly increases the temperature gradient in the molten pool. In addition, from the results of the stress field, the residual stresses are mainly distributed in the fusion zone (FZ) and heat-affected zone (HAZ). The maximum longitudinal residual stress occurs in the HAZ, about 82 MPa. While the maximum transverse residual stress occurs at the end of the plate, about 104 MPa. Neither exceeds the tensile strength of ZW61 alloy, so no cracks appear in the joint. The temperature gradient of the welded plate and the solidification rate of the molten metal in the molten pool are regulated by adjusting the welding process parameters, to improve the microstructure in the FZ. The minimum average grain size of the FZ is only 29.50 μm under the optimum welding process conditions set in this paper.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130130"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012586","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mg–Zn–Y alloy has become the favorite of magnesium alloy research due to its excellent comprehensive performance and increasingly mature deformation process. For the gas tungsten arc welding (GTAW) process of ZW61 magnesium alloy thin plates, the physical field and microstructure evolution is simulated with the finite volume method and the cellular automata (CA) method in this paper. The flow field results show that the Marangoni force dominates the flow of liquid metal in the molten pool from the center of the molten pool to the edge of the molten pool. The increase in welding speed significantly increases the temperature gradient in the molten pool. In addition, from the results of the stress field, the residual stresses are mainly distributed in the fusion zone (FZ) and heat-affected zone (HAZ). The maximum longitudinal residual stress occurs in the HAZ, about 82 MPa. While the maximum transverse residual stress occurs at the end of the plate, about 104 MPa. Neither exceeds the tensile strength of ZW61 alloy, so no cracks appear in the joint. The temperature gradient of the welded plate and the solidification rate of the molten metal in the molten pool are regulated by adjusting the welding process parameters, to improve the microstructure in the FZ. The minimum average grain size of the FZ is only 29.50 μm under the optimum welding process conditions set in this paper.
ZW61 镁合金薄板气体钨极氩弧焊的数值模拟
Mg-Zn-Y 合金以其优异的综合性能和日益成熟的变形工艺成为镁合金研究的宠儿。针对 ZW61 镁合金薄板的气体钨极氩弧焊(GTAW)过程,本文采用有限体积法和单元自动机(CA)方法模拟了其物理场和微观组织的演化过程。流场结果表明,从熔池中心到熔池边缘,马兰戈尼力主导着熔池中液态金属的流动。焊接速度的增加会明显增加熔池中的温度梯度。此外,从应力场的结果来看,残余应力主要分布在熔合区(FZ)和热影响区(HAZ)。最大纵向残余应力出现在热影响区,约为 82 兆帕。最大横向残余应力出现在板端,约为 104 兆帕。两者均未超过 ZW61 合金的抗拉强度,因此接头中未出现裂纹。通过调整焊接工艺参数来调节焊接板的温度梯度和熔池中熔融金属的凝固速率,从而改善 FZ 的微观结构。在本文设定的最佳焊接工艺条件下,FZ 的最小平均晶粒尺寸仅为 29.50 μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信