Corrosion resistance properties and hydrogen embrittlement protection efficiency of single-layer and multi-layer metal and ceramic films deposited on SS316L substrates
IF 4.3 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hsuan-Kai Lin , Xue-Yu Lu , Cian-Yu Hu , Kao-Shu Chuang , Jui-Hsiung Huang
{"title":"Corrosion resistance properties and hydrogen embrittlement protection efficiency of single-layer and multi-layer metal and ceramic films deposited on SS316L substrates","authors":"Hsuan-Kai Lin , Xue-Yu Lu , Cian-Yu Hu , Kao-Shu Chuang , Jui-Hsiung Huang","doi":"10.1016/j.matchemphys.2024.130129","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is a promising source of clean energy. However, the tanks used to store hydrogen fuel are prone to hydrogen embrittlement and are thus at risk of stress cracking and catastrophic failure. Accordingly, this study deposited single-layer and double-layer Zr, Al, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Al@Al<sub>2</sub>O<sub>3</sub>, and Al@SiO<sub>2</sub> films on 316L stainless steel substrates and examined their feasibility as protective coatings by measuring their anti-corrosion properties and hydrogen permeation currents. The results showed that the single-layer Al<sub>2</sub>O<sub>3</sub> film had a higher corrosion resistance than the single-layer SiO<sub>2</sub> film and bare 316L substrate. Among all the coatings, the Al@Al<sub>2</sub>O<sub>3</sub> double-layer coating exhibited the highest protection efficiency of 95 %. Moreover, it showed the lowest hydrogen penetration current density (1.08 x 10<sup>−3</sup> A/cm<sup>2</sup>), the longest hydrogen embrittlement time (16000 s), and the lowest hydrogen content (0.008 mol/cm<sup>3</sup>). In other words, the Al@Al<sub>2</sub>O<sub>3</sub> double-layer coating combined superior corrosion resistance with excellent hydrogen permeation suppression. Consequently, it is a promising material for enhancing the safety and longevity of hydrogen storage tanks in practical applications.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130129"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012574","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is a promising source of clean energy. However, the tanks used to store hydrogen fuel are prone to hydrogen embrittlement and are thus at risk of stress cracking and catastrophic failure. Accordingly, this study deposited single-layer and double-layer Zr, Al, SiO2, Al2O3, Al@Al2O3, and Al@SiO2 films on 316L stainless steel substrates and examined their feasibility as protective coatings by measuring their anti-corrosion properties and hydrogen permeation currents. The results showed that the single-layer Al2O3 film had a higher corrosion resistance than the single-layer SiO2 film and bare 316L substrate. Among all the coatings, the Al@Al2O3 double-layer coating exhibited the highest protection efficiency of 95 %. Moreover, it showed the lowest hydrogen penetration current density (1.08 x 10−3 A/cm2), the longest hydrogen embrittlement time (16000 s), and the lowest hydrogen content (0.008 mol/cm3). In other words, the Al@Al2O3 double-layer coating combined superior corrosion resistance with excellent hydrogen permeation suppression. Consequently, it is a promising material for enhancing the safety and longevity of hydrogen storage tanks in practical applications.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.