Damage mechanisms of Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL
Zheng-Yu Mao , De-Guang Shang , Dao-Hang Li , Na-Min Xiao , Ai-Xue Sha , Jing-Xuan Li , Cheng Qian , Quan Zhou , Wen-Long Li
{"title":"Damage mechanisms of Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes","authors":"Zheng-Yu Mao ,&nbsp;De-Guang Shang ,&nbsp;Dao-Hang Li ,&nbsp;Na-Min Xiao ,&nbsp;Ai-Xue Sha ,&nbsp;Jing-Xuan Li ,&nbsp;Cheng Qian ,&nbsp;Quan Zhou ,&nbsp;Wen-Long Li","doi":"10.1016/j.ijfatigue.2024.108707","DOIUrl":null,"url":null,"abstract":"<div><div>The fatigue experiments for titanium alloy Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes found that the combined action of high temperature and tensile stress can cause the debonding of the second phase strengthening particles between grain boundary, reducing the ability to resist deformation of Ti60, which leads to a decrease in the fatigue life of the material. In addition, mean tensile stress increases the ability of cracks to break through intergranular barriers and the non-proportional additional hardening caused by multiaxial loading exacerbates the formation of microcracks. Both will increase the fatigue damage of the material. The fatigue damage mechanism identified in this investigation can reasonably explain the fatigue life law under multiaxial loading at high temperature, uniaxial and multiaxial thermo-mechanical fatigue loadings.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"191 ","pages":"Article 108707"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005668","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fatigue experiments for titanium alloy Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes found that the combined action of high temperature and tensile stress can cause the debonding of the second phase strengthening particles between grain boundary, reducing the ability to resist deformation of Ti60, which leads to a decrease in the fatigue life of the material. In addition, mean tensile stress increases the ability of cracks to break through intergranular barriers and the non-proportional additional hardening caused by multiaxial loading exacerbates the formation of microcracks. Both will increase the fatigue damage of the material. The fatigue damage mechanism identified in this investigation can reasonably explain the fatigue life law under multiaxial loading at high temperature, uniaxial and multiaxial thermo-mechanical fatigue loadings.

Abstract Image

不同单轴/多轴热机械加载模式下 Ti60 的损伤机理
在不同单轴/多轴热机械加载模式下对钛合金 Ti60 进行的疲劳实验发现,高温和拉应力的共同作用会引起晶界间第二相强化颗粒的脱粘,降低 Ti60 的抗变形能力,从而导致材料的疲劳寿命下降。此外,平均拉应力会增加裂纹突破晶间壁垒的能力,多轴加载引起的非比例附加硬化会加剧微裂纹的形成。两者都会增加材料的疲劳损伤。本次研究确定的疲劳损伤机理可以合理解释高温多轴加载、单轴和多轴热机械疲劳加载下的疲劳寿命规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信