Rehmannioside A promotes the osteoblastic differentiation of MC3T3-E1 cells via the PI3K/AKT signaling pathway and inhibits glucocorticoid-induced bone loss in vivo
Haisheng Huang , Fang Ji , Guobin Qi , Yuting Cao , Xuecheng He , Hao Wang , Zengxin Jiang
{"title":"Rehmannioside A promotes the osteoblastic differentiation of MC3T3-E1 cells via the PI3K/AKT signaling pathway and inhibits glucocorticoid-induced bone loss in vivo","authors":"Haisheng Huang , Fang Ji , Guobin Qi , Yuting Cao , Xuecheng He , Hao Wang , Zengxin Jiang","doi":"10.1016/j.jphs.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Glucocorticoid-induced osteoporosis (GIOP) is a widespread disease characterized by low bone density. There remains a lack of effective means for osteoporosis. Rehmannioside A (ReA), an iridoid glycoside, exhibits various pharmacological activities. This study aimed to explore the role and mechanism of ReA in osteogenic differentiation of osteoblasts. Cell viability, reactive oxygen species (ROS) generation, and cell apoptosis were assessed using corresponding assay kits. Real-time quantitative polymerase chain reaction, Western blotting, and alkaline phosphatase (ALP) staining were performed to evaluate the osteogenic differentiation of MC3T3-E1 cells. Alizarin red S staining was used to assess the mineralization of MC3T3-E1 cells. Protein expression associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway was analyzed using Western blotting. Micro-computed tomography, histopathological, and immunohistochemical analyses were performed to determine the therapeutic effect of ReA on GIOP <em>in vivo</em>.The results showed that ReA promoted the osteogenic differentiation of MC3T3-E1 cells by regulating the PI3K/AKT signaling pathway and protected mice against glucocorticoid-induced bone loss by promoting osteoblast-mediated bone formation <em>in vivo</em>. The findings of the current study revealed that ReA is a potential therapeutic agent for osteoporosis.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 4","pages":"Pages 247-257"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861324000719","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a widespread disease characterized by low bone density. There remains a lack of effective means for osteoporosis. Rehmannioside A (ReA), an iridoid glycoside, exhibits various pharmacological activities. This study aimed to explore the role and mechanism of ReA in osteogenic differentiation of osteoblasts. Cell viability, reactive oxygen species (ROS) generation, and cell apoptosis were assessed using corresponding assay kits. Real-time quantitative polymerase chain reaction, Western blotting, and alkaline phosphatase (ALP) staining were performed to evaluate the osteogenic differentiation of MC3T3-E1 cells. Alizarin red S staining was used to assess the mineralization of MC3T3-E1 cells. Protein expression associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway was analyzed using Western blotting. Micro-computed tomography, histopathological, and immunohistochemical analyses were performed to determine the therapeutic effect of ReA on GIOP in vivo.The results showed that ReA promoted the osteogenic differentiation of MC3T3-E1 cells by regulating the PI3K/AKT signaling pathway and protected mice against glucocorticoid-induced bone loss by promoting osteoblast-mediated bone formation in vivo. The findings of the current study revealed that ReA is a potential therapeutic agent for osteoporosis.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.