Hybrid Naïve Bayes Gaussian mixture models and SAR polarimetry based automatic flooded vegetation studies using PALSAR-2 data

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Samvedya Surampudi, Vijay Kumar
{"title":"Hybrid Naïve Bayes Gaussian mixture models and SAR polarimetry based automatic flooded vegetation studies using PALSAR-2 data","authors":"Samvedya Surampudi,&nbsp;Vijay Kumar","doi":"10.1016/j.rsase.2024.101361","DOIUrl":null,"url":null,"abstract":"<div><div>Flood mapping using Synthetic Aperture Radar (SAR) data impose limitations in fully distinguishing flood under vegetation due to false double bounce returns from inundated tree trunks along with seasonal heterogeneities devised from changing land cover settings. In addition, rapid mapping of flooded vegetation is challenging during near real time applications. In this paper a fully automatic novel supervised classification approach called polarimetric Naïve Bayes is proposed that combines polarimetric information with series of Gaussian mixture models in Naïve Bayes framework to detect various flooded vegetation classes. It also allows the user to choose class configuration and eliminates creation of Region of Interest (ROI) for supervised training. The proposed approach uses scattering information from pre monsoon PolSAR dataset in training step to create ROIs for buildings and other features. In the next step series of Gaussian Mixtures are used for density estimation for different features in Bayesian multiclass problem. The newly developed classifier applied on 2016 Assam flood event resulted in precise mapping of at least three different vegetation classes under flood such as submerged vegetation, wetlands and floating vegetation. Under optimal class configuration, the approach showed better performance compared to other supervised techniques applied on the same data set such as MLE, Mahalanobis, Minimum Euclidean distance, and SVM classifications in delineating flood, submerged vegetation, wetlands and floating vegetation with Producer’s Accuracy of 98.6%, 81.1%, 94% and 51.5% respectively and combined Overall accuracy of 95.5% for flooded vegetation class. This method also detected multiple vegetation classes with better accuracy compared to similar methods.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101361"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Flood mapping using Synthetic Aperture Radar (SAR) data impose limitations in fully distinguishing flood under vegetation due to false double bounce returns from inundated tree trunks along with seasonal heterogeneities devised from changing land cover settings. In addition, rapid mapping of flooded vegetation is challenging during near real time applications. In this paper a fully automatic novel supervised classification approach called polarimetric Naïve Bayes is proposed that combines polarimetric information with series of Gaussian mixture models in Naïve Bayes framework to detect various flooded vegetation classes. It also allows the user to choose class configuration and eliminates creation of Region of Interest (ROI) for supervised training. The proposed approach uses scattering information from pre monsoon PolSAR dataset in training step to create ROIs for buildings and other features. In the next step series of Gaussian Mixtures are used for density estimation for different features in Bayesian multiclass problem. The newly developed classifier applied on 2016 Assam flood event resulted in precise mapping of at least three different vegetation classes under flood such as submerged vegetation, wetlands and floating vegetation. Under optimal class configuration, the approach showed better performance compared to other supervised techniques applied on the same data set such as MLE, Mahalanobis, Minimum Euclidean distance, and SVM classifications in delineating flood, submerged vegetation, wetlands and floating vegetation with Producer’s Accuracy of 98.6%, 81.1%, 94% and 51.5% respectively and combined Overall accuracy of 95.5% for flooded vegetation class. This method also detected multiple vegetation classes with better accuracy compared to similar methods.
利用 PALSAR-2 数据进行基于 Naïve Bayes 高斯混合模型和合成孔径雷达偏振测量法的自动淹没植被研究
使用合成孔径雷达(SAR)数据绘制洪水地图在完全区分植被下的洪水方面存在局限性,原因是被洪水淹没的树干会产生虚假的双反弹返回,而不断变化的土地覆盖环境又会产生季节性的异质性。此外,在近乎实时的应用中,快速绘制洪水植被图具有挑战性。本文提出了一种名为 "极坐标奈维贝叶斯"(Polarimetric Naïve Bayes)的全自动新型监督分类方法,该方法将极坐标信息与奈维贝叶斯框架中的一系列高斯混合模型相结合,以检测各种淹没植被类别。该方法还允许用户选择类别配置,并无需为监督训练创建感兴趣区域(ROI)。建议的方法在训练步骤中使用季风前 PolSAR 数据集的散射信息,为建筑物和其他特征创建 ROI。在下一步中,一系列高斯混合物被用于贝叶斯多类问题中不同特征的密度估计。新开发的分类器应用于 2016 年阿萨姆邦洪水事件,精确绘制了洪水中至少三种不同的植被类别,如淹没植被、湿地和漂浮植被。在最佳类别配置下,与应用于相同数据集的其他监督技术(如 MLE、Mahalanobis、最小欧氏距离和 SVM 分类)相比,该方法在划分洪水、淹没植被、湿地和漂浮植被方面表现出更好的性能,生产者准确率分别为 98.6%、81.1%、94% 和 51.5%,洪水植被类别的综合准确率为 95.5%。与同类方法相比,该方法检测多个植被类别的准确率也更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信