{"title":"Redundancy resolution of a variable base frame of a 3-DoF cable-driven serial chain by using an adaptive neuro-fuzzy controller","authors":"Vahid Bahrami, Ahmad Kalhor, Mehdi Tale Masouleh","doi":"10.1016/j.jfranklin.2024.107348","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel approach using adaptive neuro-fuzzy techniques to design controllers for planar cable-driven serial chain robots with variable configurations. The approach consists of two key components: (1) deriving dynamic models for cable-driven serial chain robots which are independent of their structure, and (2) adaptively determining the optimal cable connection points. Traditional methods face challenges in obtaining accurate dynamic equations for cable-driven serial chain robots with high degrees-of-freedom, hence neural networks are employed to estimate the model. In order to handle the variability in cable connection points, adaptive fuzzy methods are utilized. The proposed adaptive neuro-fuzzy controller algorithm introduces two new indices, namely cost-of-redundancy and degree-of-redundancy, to effectively address redundancy concerns. Additionally, the algorithm efficiently reduces the search space for finding the optimal configuration. Simulation results for a planar 3 degrees-of-freedom cable-driven serial chain robot using this algorithm showcase a noteworthy 42% reduction in cost-of-redundancy and an impressive 53.125% reduction in search space.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 1","pages":"Article 107348"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224007695","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel approach using adaptive neuro-fuzzy techniques to design controllers for planar cable-driven serial chain robots with variable configurations. The approach consists of two key components: (1) deriving dynamic models for cable-driven serial chain robots which are independent of their structure, and (2) adaptively determining the optimal cable connection points. Traditional methods face challenges in obtaining accurate dynamic equations for cable-driven serial chain robots with high degrees-of-freedom, hence neural networks are employed to estimate the model. In order to handle the variability in cable connection points, adaptive fuzzy methods are utilized. The proposed adaptive neuro-fuzzy controller algorithm introduces two new indices, namely cost-of-redundancy and degree-of-redundancy, to effectively address redundancy concerns. Additionally, the algorithm efficiently reduces the search space for finding the optimal configuration. Simulation results for a planar 3 degrees-of-freedom cable-driven serial chain robot using this algorithm showcase a noteworthy 42% reduction in cost-of-redundancy and an impressive 53.125% reduction in search space.
期刊介绍:
The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.