Robust H∞ output feedback control for polynomial discrete-time systems

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
S. Saat , R. Sakhtivel , F.A. Hussin , M. Sedek
{"title":"Robust H∞ output feedback control for polynomial discrete-time systems","authors":"S. Saat ,&nbsp;R. Sakhtivel ,&nbsp;F.A. Hussin ,&nbsp;M. Sedek","doi":"10.1016/j.jfranklin.2024.107328","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to design a robust output feedback controller with <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance for polynomial discrete-time systems (PDTS). This is due to the lack of research available on PDTS’ output feedback control especially when uncertainty is considered in the system. To be specific, the norm-bounded uncertainties are considered instead of polytopic uncertainties and then a so-called ‘<span><math><mrow><mi>s</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>e</mi><mi>d</mi></mrow></math></span>’ system is established to relate the robust <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> and the nonlinear <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> output feedback control problem. The integrator approach is introduced to overcome the nonconvexity issue when the polynomial Lyapunov function is selected. The controller is obtained by solving the sufficient conditions which are formulated in Polynomial Matrix Inequalities (PMIs) which is then converted into Sum of Squares (SOS) form. Semidefinite Programming (SDP) is used to obtain the results. Finally, the efficacy of the method is shown through numerical examples.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 1","pages":"Article 107328"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001600322400749X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to design a robust output feedback controller with H performance for polynomial discrete-time systems (PDTS). This is due to the lack of research available on PDTS’ output feedback control especially when uncertainty is considered in the system. To be specific, the norm-bounded uncertainties are considered instead of polytopic uncertainties and then a so-called ‘scaled’ system is established to relate the robust H and the nonlinear H output feedback control problem. The integrator approach is introduced to overcome the nonconvexity issue when the polynomial Lyapunov function is selected. The controller is obtained by solving the sufficient conditions which are formulated in Polynomial Matrix Inequalities (PMIs) which is then converted into Sum of Squares (SOS) form. Semidefinite Programming (SDP) is used to obtain the results. Finally, the efficacy of the method is shown through numerical examples.
多项式离散时间系统的鲁棒 H∞ 输出反馈控制
本文旨在为多项式离散时间系统(PDTS)设计一种具有 H∞ 性能的鲁棒输出反馈控制器。这是因为目前缺乏对 PDTS 输出反馈控制的研究,尤其是当系统中考虑到不确定性时。具体来说,我们考虑了有规范约束的不确定性,而不是多点不确定性,然后建立了一个所谓的 "缩放 "系统,将鲁棒 H∞ 和非线性 H∞ 输出反馈控制问题联系起来。在选择多项式 Lyapunov 函数时,引入了积分器方法来克服非凸性问题。控制器通过求解以多项式矩阵不等式(PMI)提出的充分条件得到,然后转换成平方和(SOS)形式。半定量编程(SDP)用于获得结果。最后,通过数值示例展示了该方法的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信