{"title":"Multiaxial low cycle fatigue behavior and constitutive model of 316L under various loading paths at high-temperature","authors":"Fei Liang, Wei Zhang, Qiaofa Yang, Peng Yin, Qixuan Zhang, Tianhao Ma, Le Chang, Changyu Zhou","doi":"10.1016/j.ijfatigue.2024.108708","DOIUrl":null,"url":null,"abstract":"<div><div>The work is devoted into investigating the multiaxial low cycle fatigue behavior and constitutive model of 316L under various strain amplitudes, strain ratios, and phase angles at 550 °C. Experimental results show that both axial and shear stress amplitudes present three stages of cyclic hardening, softening and fracture. Internal stress analysis reveals that initial cyclic hardening is influenced by both friction and back stresses, while cyclic softening is primarily controlled by friction stress. Moreover, the Mises equivalent stress–strain relationship effectively accommodates different strain amplitudes and strain ratios, but cannot account for the non-proportional hardening arising from back stress. Pearson correlation analysis highlights a correlation between fatigue life and the equivalent stress amplitude and plastic strain energy density, and that elastic modulus is influenced by strain ratio and phase angle, not the strain amplitude. Based on the Chaboche unified viscoplastic constitutive theory, an improved constitutive model incorporating new hardening rules and Hooke’s law is proposed. In the proposed model, three classical loading path-dependent coefficients’ ability for description of non-proportional hardening and stiffness weakening behaviors are evaluated. Simulation results reveal that the proposed model can effectively capture the non-proportional hardening of back stress, stiffness weakening, non-masing effect, and varied softening rate.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"191 ","pages":"Article 108708"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014211232400567X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The work is devoted into investigating the multiaxial low cycle fatigue behavior and constitutive model of 316L under various strain amplitudes, strain ratios, and phase angles at 550 °C. Experimental results show that both axial and shear stress amplitudes present three stages of cyclic hardening, softening and fracture. Internal stress analysis reveals that initial cyclic hardening is influenced by both friction and back stresses, while cyclic softening is primarily controlled by friction stress. Moreover, the Mises equivalent stress–strain relationship effectively accommodates different strain amplitudes and strain ratios, but cannot account for the non-proportional hardening arising from back stress. Pearson correlation analysis highlights a correlation between fatigue life and the equivalent stress amplitude and plastic strain energy density, and that elastic modulus is influenced by strain ratio and phase angle, not the strain amplitude. Based on the Chaboche unified viscoplastic constitutive theory, an improved constitutive model incorporating new hardening rules and Hooke’s law is proposed. In the proposed model, three classical loading path-dependent coefficients’ ability for description of non-proportional hardening and stiffness weakening behaviors are evaluated. Simulation results reveal that the proposed model can effectively capture the non-proportional hardening of back stress, stiffness weakening, non-masing effect, and varied softening rate.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.