Zhiguo Zhang , Zhiqing Guo , Liejun Wang, Yongming Li
{"title":"CTIFTrack: Continuous Temporal Information Fusion for object track","authors":"Zhiguo Zhang , Zhiqing Guo , Liejun Wang, Yongming Li","doi":"10.1016/j.eswa.2024.125654","DOIUrl":null,"url":null,"abstract":"<div><div>In visual tracking tasks, researchers usually focus on increasing the complexity of the model or only discretely focusing on the changes in the object itself to achieve accurate recognition and tracking of the moving object. However, they often overlook the significant contribution of video-level linear temporal information fusion and continuous spatiotemporal mapping to tracking tasks. This oversight may lead to poor tracking performance or insufficient real-time ability of the model in complex scenes. Therefore, this paper proposes a real-time tracker, namely Continuous Temporal Information Fusion Tracker (CTIFTrack). The key of CTIFTrack lies in its well-designed Temporal Information Fusion (TIF) module, which cleverly performs a linear fusion of the temporal information between the <span><math><mrow><mrow><mo>(</mo><mi>t</mi><mtext>-</mtext><mn>1</mn><mo>)</mo></mrow><mtext>-th</mtext></mrow></math></span> and the <span><math><mrow><mi>t</mi><mtext>-th</mtext></mrow></math></span> frames and completes the spatiotemporal mapping. This enables the tracker to better understand the overall spatiotemporal information and contextual spatiotemporal correlations within the video, thereby having a positive impact on the tracking task. In addition, this paper also proposes the Object Template Feature Refinement (OTFR) module, which effectively captures the global information and local details of the object, and further improves the tracker’s understanding of the object features. Extensive experiments are conducted on seven benchmarks, such as LaSOT, GOT-10K, UAV123, NFS, TrackingNet, VOT2018 and OTB-100. The experimental results validate the significant contribution of the TIF module and OTFR module to the tracking task, as well as the effectiveness of CTIFTrack. It is worth noting that while maintaining excellent tracking performance, CTIFTrack also shows outstanding real-time tracking speed. On the Nvidia Tesla T4-16GB GPU, the <span><math><mrow><mi>F</mi><mi>P</mi><mi>S</mi></mrow></math></span> of CTIFTrack reaches 71.98. The code and demo materials will be available at <span><span>https://github.com/vpsg-research/CTIFTrack</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"262 ","pages":"Article 125654"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424025211","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In visual tracking tasks, researchers usually focus on increasing the complexity of the model or only discretely focusing on the changes in the object itself to achieve accurate recognition and tracking of the moving object. However, they often overlook the significant contribution of video-level linear temporal information fusion and continuous spatiotemporal mapping to tracking tasks. This oversight may lead to poor tracking performance or insufficient real-time ability of the model in complex scenes. Therefore, this paper proposes a real-time tracker, namely Continuous Temporal Information Fusion Tracker (CTIFTrack). The key of CTIFTrack lies in its well-designed Temporal Information Fusion (TIF) module, which cleverly performs a linear fusion of the temporal information between the and the frames and completes the spatiotemporal mapping. This enables the tracker to better understand the overall spatiotemporal information and contextual spatiotemporal correlations within the video, thereby having a positive impact on the tracking task. In addition, this paper also proposes the Object Template Feature Refinement (OTFR) module, which effectively captures the global information and local details of the object, and further improves the tracker’s understanding of the object features. Extensive experiments are conducted on seven benchmarks, such as LaSOT, GOT-10K, UAV123, NFS, TrackingNet, VOT2018 and OTB-100. The experimental results validate the significant contribution of the TIF module and OTFR module to the tracking task, as well as the effectiveness of CTIFTrack. It is worth noting that while maintaining excellent tracking performance, CTIFTrack also shows outstanding real-time tracking speed. On the Nvidia Tesla T4-16GB GPU, the of CTIFTrack reaches 71.98. The code and demo materials will be available at https://github.com/vpsg-research/CTIFTrack.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.