On the p-torsional rigidity of combinatorial graphs

IF 1.3 2区 数学 Q1 MATHEMATICS
Patrizio Bifulco, Delio Mugnolo
{"title":"On the p-torsional rigidity of combinatorial graphs","authors":"Patrizio Bifulco,&nbsp;Delio Mugnolo","doi":"10.1016/j.na.2024.113694","DOIUrl":null,"url":null,"abstract":"<div><div>We study the <span><math><mi>p</mi></math></span>-<em>torsion function</em> and the corresponding <span><math><mi>p</mi></math></span>-<em>torsional rigidity</em> associated with <span><math><mi>p</mi></math></span>-Laplacians and, more generally, <span><math><mi>p</mi></math></span>-Schrödinger operators, for <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, on possibly infinite combinatorial graphs. We present sufficient criteria for the existence of a summable <span><math><mi>p</mi></math></span>-torsion function and we derive several upper and lower bounds for the <span><math><mi>p</mi></math></span>-torsional rigidity. Our methods are mostly based on novel surgery principles. As an application, we also find some new estimates on the bottom of the spectrum of the <span><math><mi>p</mi></math></span>-Laplacian with Dirichlet conditions, thus complementing some results recently obtained in Mazón and Toledo (2023) in a more general setting. Finally, we prove a Kohler–Jobin inequality for combinatorial graphs (for <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></math></span>): to the best of our knowledge, graphs thus become the third ambient where a Kohler–Jobin inequality is known to hold.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113694"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X2400213X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the p-torsion function and the corresponding p-torsional rigidity associated with p-Laplacians and, more generally, p-Schrödinger operators, for 1<p<, on possibly infinite combinatorial graphs. We present sufficient criteria for the existence of a summable p-torsion function and we derive several upper and lower bounds for the p-torsional rigidity. Our methods are mostly based on novel surgery principles. As an application, we also find some new estimates on the bottom of the spectrum of the p-Laplacian with Dirichlet conditions, thus complementing some results recently obtained in Mazón and Toledo (2023) in a more general setting. Finally, we prove a Kohler–Jobin inequality for combinatorial graphs (for p=2): to the best of our knowledge, graphs thus become the third ambient where a Kohler–Jobin inequality is known to hold.
论组合图的 p 扭转刚性
我们研究了可能是无限组合图上 1<p<∞ 的 p-拉普拉奇算子以及更广义的 p-薛定谔算子的 p-扭转函数和相应的 p-扭转刚性。我们提出了可求和 p-torsion 函数存在的充分标准,并推导出 p-torsion 刚性的若干上界和下界。我们的方法大多基于新颖的手术原理。作为一个应用,我们还发现了一些关于具有 Dirichlet 条件的 p-Laplacian 谱底的新估计,从而补充了 Mazón 和 Toledo (2023) 最近在一个更一般的环境中获得的一些结果。最后,我们证明了组合图(p=2 时)的科勒-乔宾不等式:据我们所知,图是已知科勒-乔宾不等式成立的第三个环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信